These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19144589)

  • 1. Fascicular perineurium thickness, size, and position affect model predictions of neural excitation.
    Grinberg Y; Schiefer MA; Tyler DJ; Gustafson KJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):572-81. PubMed ID: 19144589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and smaller cross-sectional area.
    Davis CJ; Musselman ED; Grill WM; Pelot NA
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36917856
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study.
    Lertmanorat Z; Durand DM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the parameters used in finite element modeling of compound peripheral nerves.
    Pelot NA; Behrend CE; Grill WM
    J Neural Eng; 2019 Feb; 16(1):016007. PubMed ID: 30507555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fascicle-selectivity of an intraneural stimulation electrode in the rabbit sciatic nerve.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):192-7. PubMed ID: 21954195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.
    Kent AR; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036010. PubMed ID: 23594706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis.
    Schiefer MA; Triolo RJ; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):195-204. PubMed ID: 18403289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat.
    Pelot NA; Goldhagen GB; Cariello JE; Musselman ED; Clissold KA; Ezzell JA; Grill WM
    Front Neurosci; 2020; 14():601479. PubMed ID: 33250710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces.
    Eiber CD; Payne SC; Biscola NP; Havton LA; Keast JR; Osborne PB; Fallon JB
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34740201
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block.
    Ackermann DM; Foldes EL; Bhadra N; Kilgore KL
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):469-77. PubMed ID: 19840914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate simulation of cuff electrode stimulation predicting in-vivo strength-duration thresholds.
    Lazorchak N; Horn MR; Muzquiz MI; Mintch LM; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2073-2084. PubMed ID: 35896504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recovery of fascicular activity in peripheral nerves.
    Wodlinger B; Durand DM
    J Neural Eng; 2011 Oct; 8(5):056005. PubMed ID: 21828890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fascicle specific targeting for selective peripheral nerve stimulation.
    Overstreet CK; Cheng J; Keefer EW
    J Neural Eng; 2019 Nov; 16(6):066040. PubMed ID: 31509815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays.
    Nanivadekar AC; Ayers CA; Gaunt RA; Weber DJ; Fisher LE
    J Neural Eng; 2019 Dec; 17(1):016011. PubMed ID: 31577993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.
    Nielsen TN; Sevcencu C; Struijk JJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study.
    Lertmanorat Z; Durand DM
    J Neural Eng; 2004 Dec; 1(4):202-11. PubMed ID: 15876640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves.
    Capllonch-Juan M; Sepulveda F
    PLoS Comput Biol; 2020 Jun; 16(6):e1007826. PubMed ID: 32479499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode.
    Polasek KH; Hoyen HA; Keith MW; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):76-82. PubMed ID: 17436879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode.
    Koole P; Holsheimer J; Struijk JJ; Verloop AJ
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):40-50. PubMed ID: 9086384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling to evaluate helical electrode designs.
    Cowley AW; Szlavik RB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2029-32. PubMed ID: 22254734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.