BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 19144995)

  • 1. Defective CFTR increases synthesis and mass of sphingolipids that modulate membrane composition and lipid signaling.
    Hamai H; Keyserman F; Quittell LM; Worgall TS
    J Lipid Res; 2009 Jun; 50(6):1101-8. PubMed ID: 19144995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid metabolism in cystic fibrosis.
    Worgall TS
    Curr Opin Clin Nutr Metab Care; 2009 Mar; 12(2):105-9. PubMed ID: 19209467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Sphingolipid Synthesis as a Phenotype-Modifying Therapy in Cystic Fibrosis.
    Mingione A; Dei Cas M; Bonezzi F; Caretti A; Piccoli M; Anastasia L; Ghidoni R; Paroni R; Signorelli P
    Cell Physiol Biochem; 2020 Jan; 54(1):110-125. PubMed ID: 31999897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).
    Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB
    J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis.
    Westhölter D; Schumacher F; Wülfinghoff N; Sutharsan S; Strassburg S; Kleuser B; Horn PA; Reuter S; Gulbins E; Taube C; Welsner M
    J Cyst Fibros; 2022 Jul; 21(4):713-720. PubMed ID: 35168870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingolipid synthetic pathways are major regulators of lipid homeostasis.
    Worgall TS
    Adv Exp Med Biol; 2011; 721():139-48. PubMed ID: 21910087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFTR regulation of intracellular pH and ceramides is required for lung endothelial cell apoptosis.
    Noe J; Petrusca D; Rush N; Deng P; VanDemark M; Berdyshev E; Gu Y; Smith P; Schweitzer K; Pilewsky J; Natarajan V; Xu Z; Obukhov AG; Petrache I
    Am J Respir Cell Mol Biol; 2009 Sep; 41(3):314-23. PubMed ID: 19168702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflammatory role of extracellular sphingolipids in Cystic Fibrosis.
    Zulueta A; Peli V; Dei Cas M; Colombo M; Paroni R; Falleni M; Baisi A; Bollati V; Chiaramonte R; Del Favero E; Ghidoni R; Caretti A
    Int J Biochem Cell Biol; 2019 Nov; 116():105622. PubMed ID: 31563560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis.
    Fang D; West RH; Manson ME; Ruddy J; Jiang D; Previs SF; Sonawane ND; Burgess JD; Kelley TJ
    Respir Res; 2010 May; 11(1):61. PubMed ID: 20487541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fenretinide corrects newly found ceramide deficiency in cystic fibrosis.
    Guilbault C; De Sanctis JB; Wojewodka G; Saeed Z; Lachance C; Skinner TA; Vilela RM; Kubow S; Lands LC; Hajduch M; Matouk E; Radzioch D
    Am J Respir Cell Mol Biol; 2008 Jan; 38(1):47-56. PubMed ID: 17656682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.
    Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN
    J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-talk between CFTR and sphingolipids in cystic fibrosis.
    Dobi D; Loberto N; Bassi R; Pistocchi A; Lunghi G; Tamanini A; Aureli M
    FEBS Open Bio; 2023 Sep; 13(9):1601-1614. PubMed ID: 37315117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: Reconstitution of SPT regulation in isolated membranes.
    Davis DL; Gable K; Suemitsu J; Dunn TM; Wattenberg BW
    J Biol Chem; 2019 Mar; 294(13):5146-5156. PubMed ID: 30700557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma membrane-localized TMEM16 proteins are indispensable for expression of CFTR.
    Benedetto R; Ousingsawat J; Cabrita I; Pinto M; Lérias JR; Wanitchakool P; Schreiber R; Kunzelmann K
    J Mol Med (Berl); 2019 May; 97(5):711-722. PubMed ID: 30915480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial Sphingolipid De Novo Synthesis Controls Blood Pressure by Regulating Signal Transduction and NO via Ceramide.
    Cantalupo A; Sasset L; Gargiulo A; Rubinelli L; Del Gaudio I; Benvenuto D; Wadsack C; Jiang XC; Bucci MR; Di Lorenzo A
    Hypertension; 2020 May; 75(5):1279-1288. PubMed ID: 32172624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis.
    Yu H; Zeidan YH; Wu BX; Jenkins RW; Flotte TR; Hannun YA; Virella-Lowell I
    Am J Respir Cell Mol Biol; 2009 Sep; 41(3):367-75. PubMed ID: 19168701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema.
    Bodas M; Min T; Mazur S; Vij N
    J Immunol; 2011 Jan; 186(1):602-13. PubMed ID: 21135173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels.
    Mickle JE; Milewski MI; Macek M; Cutting GR
    Am J Hum Genet; 2000 May; 66(5):1485-95. PubMed ID: 10762539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.