These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 19145617)
1. Perfluoropentaphenylborole. Fan C; Piers WE; Parvez M Angew Chem Int Ed Engl; 2009; 48(16):2955-8. PubMed ID: 19145617 [TBL] [Abstract][Full Text] [Related]
2. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings. Wu JI; Pühlhofer FG; Schleyer Pv; Puchta R; Kiran B; Mauksch M; Hommes NJ; Alkorta I; Elguero J J Phys Chem A; 2009 Jun; 113(24):6789-94. PubMed ID: 19472981 [TBL] [Abstract][Full Text] [Related]
3. Ring expansion reactions of pentaphenylborole with dipolar molecules as a route to seven-membered boron heterocycles. Huang K; Martin CD Inorg Chem; 2015 Feb; 54(4):1869-75. PubMed ID: 25599271 [TBL] [Abstract][Full Text] [Related]
4. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes. Armitt DJ; Bruce MI; Gaudio M; Zaitseva NN; Skelton BW; White AH; Le Guennic B; Halet JF; Fox MA; Roberts RL; Hartl F; Low PJ Dalton Trans; 2008 Dec; (47):6763-75. PubMed ID: 19153624 [TBL] [Abstract][Full Text] [Related]
5. Isomer Dependence on the Reactivity of Diazenes with Pentaphenylborole. Adiraju VAK; Martin CD Chemistry; 2017 Aug; 23(47):11437-11444. PubMed ID: 28675467 [TBL] [Abstract][Full Text] [Related]
6. Proximity and cooperativity effects in binuclear d(0) olefin polymerization catalysis. theoretical analysis of structure and reaction mechanism. Motta A; Fragalà IL; Marks TJ J Am Chem Soc; 2009 Mar; 131(11):3974-84. PubMed ID: 19249823 [TBL] [Abstract][Full Text] [Related]
7. Perfluoropentaphenylborole: a new approach to Lewis acidic, electron-deficient compounds. Huynh K; Vignolle J; Tilley TD Angew Chem Int Ed Engl; 2009; 48(16):2835-7. PubMed ID: 19301345 [TBL] [Abstract][Full Text] [Related]
8. Peculiar Reactivity of Isothiocyanates with Pentaphenylborole. Huang K; Martin CD Inorg Chem; 2016 Jan; 55(1):330-7. PubMed ID: 26682496 [TBL] [Abstract][Full Text] [Related]
9. Computational Predictions of the Beryllium Analogue of Borole, Cp(+), and the Fluorenyl Cation: Highly Stabilized, non-Lewis Acidic Antiaromatic Ring Systems. Field-Theodore TE; Wilson DJ; Dutton JL Inorg Chem; 2015 Aug; 54(16):8035-41. PubMed ID: 26241788 [TBL] [Abstract][Full Text] [Related]
10. Direct functionalization at the boron center of antiaromatic chloroborole. Braunschweig H; Kupfer T Chem Commun (Camb); 2008 Oct; (37):4487-9. PubMed ID: 18802599 [TBL] [Abstract][Full Text] [Related]
11. Dehydrogenation of LGeH by a Lewis N-heterocyclic carbene borane pair under the formation of L'Ge and its reactions with B(C(6)F(5))(3) and trimethylsilyl diazomethane: an unprecedented rearrangement of a diazocompound to an isonitrile. Jana A; Objartel I; Roesky HW; Stalke D Inorg Chem; 2009 Aug; 48(16):7645-9. PubMed ID: 19722685 [TBL] [Abstract][Full Text] [Related]
12. Investigating the ring expansion reaction of pentaphenylborole and an azide. Couchman SA; Thompson TK; Wilson DJ; Dutton JL; Martin CD Chem Commun (Camb); 2014 Oct; 50(79):11724-6. PubMed ID: 25142866 [TBL] [Abstract][Full Text] [Related]
13. Phosphinoborane and sulfidoborohydride as chelating ligands in polyhydride ruthenium complexes: agostic sigma-borane versus dihydroborate coordination. Gloaguen Y; Alcaraz G; Pécharman AF; Clot E; Vendier L; Sabo-Etienne S Angew Chem Int Ed Engl; 2009; 48(16):2964-8. PubMed ID: 19283798 [TBL] [Abstract][Full Text] [Related]