These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19146325)

  • 1. Vector subtraction using visual and extraretinal motion signals: a new look at efference copy and corollary discharge theories.
    Perrone JA; Krauzlis RJ
    J Vis; 2008 Dec; 8(14):24.1-14. PubMed ID: 19146325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efference copy and its limitations.
    Bridgeman B
    Comput Biol Med; 2007 Jul; 37(7):924-9. PubMed ID: 16987505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling.
    Chagnaud BP; Simmers J; Straka H
    Biol Cybern; 2012 Dec; 106(11-12):669-79. PubMed ID: 23179256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which retinal and extra-retinal information is crucial for circular vection?
    Mergner T; Wertheim A; Rumberger A
    Arch Ital Biol; 2000 Apr; 138(2):123-38. PubMed ID: 10782254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temporal and spatial limits of compensation for fixational eye movements.
    Wallis G
    Vision Res; 2006 Sep; 46(18):2848-58. PubMed ID: 16643979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MST neurons code for visual motion in space independent of pursuit eye movements.
    Inaba N; Shinomoto S; Yamane S; Takemura A; Kawano K
    J Neurophysiol; 2007 May; 97(5):3473-83. PubMed ID: 17329625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nonlinear structure of motion perception during smooth eye movements.
    Morvan C; Wexler M
    J Vis; 2009 Jul; 9(7):1. PubMed ID: 19761316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Visual suppression during eye movements (a brief review on the problem of the mechanisms and their role in visual perception). I. A brief review and the mechanisms].
    Baziian BKh
    Usp Fiziol Nauk; 1999; 30(2):63-73. PubMed ID: 10420476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetry of perceived motion smear during head and eye movements: evidence for a dichotomous neural categorization of retinal image motion.
    Tong J; Patel SS; Bedell HE
    Vision Res; 2005 Jun; 45(12):1519-24. PubMed ID: 15781070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signals of eye-muscle proprioception modulate perceived motion smear.
    Tong J; Stevenson SB; Bedell HE
    J Vis; 2008 Oct; 8(14):7.1-6. PubMed ID: 19146308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. False perception of motion in a patient who cannot compensate for eye movements.
    Haarmeier T; Thier P; Repnow M; Petersen D
    Nature; 1997 Oct; 389(6653):849-52. PubMed ID: 9349816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature eye movements enhance fine spatial detail.
    Rucci M; Iovin R; Poletti M; Santini F
    Nature; 2007 Jun; 447(7146):851-4. PubMed ID: 17568745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of eye movements and retinal signals during the perception of 3-D motion direction.
    Harris JM
    J Vis; 2006 Jul; 6(8):777-90. PubMed ID: 16895458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel role for visual perspective cues in the neural computation of depth.
    Kim HR; Angelaki DE; DeAngelis GC
    Nat Neurosci; 2015 Jan; 18(1):129-37. PubMed ID: 25436667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source of the eye-movement signal reaching real-motion cells.
    Fattori P; Battaglini PP
    Boll Soc Ital Biol Sper; 1990 Sep; 66(9):865-71. PubMed ID: 2073387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pursuit--vestibular interactions in brain stem neurons during rotation and translation.
    Meng H; Green AM; Dickman JD; Angelaki DE
    J Neurophysiol; 2005 Jun; 93(6):3418-33. PubMed ID: 15647394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pursuit speed compensation in cortical area MSTd.
    Shenoy KV; Crowell JA; Andersen RA
    J Neurophysiol; 2002 Nov; 88(5):2630-47. PubMed ID: 12424299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual-vestibular interaction during head-free pursuit of pseudorandom target motion in man.
    Waterston JA; Barnes GR
    J Vestib Res; 1992; 2(1):71-88. PubMed ID: 1342385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the combination of optic flow and extraretinal eye movement signals in primate extrastriate visual cortex. Neural model of self-motion from optic flow and extraretinal cues.
    Lappe M
    Neural Netw; 1998 Apr; 11(3):397-414. PubMed ID: 12662818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraretinal signals in MSTd neurons related to volitional smooth pursuit.
    Ono S; Mustari MJ
    J Neurophysiol; 2006 Nov; 96(5):2819-25. PubMed ID: 16790593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.