These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 19146533)
1. Functionality of lactic acid bacteria peptidase activities in the hydrolysis of gliadin-like fragments. Gerez CL; Font de Valdez G; Rollán GC Lett Appl Microbiol; 2008 Nov; 47(5):427-32. PubMed ID: 19146533 [TBL] [Abstract][Full Text] [Related]
2. Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli. Rollán G; De Angelis M; Gobbetti M; de Valdez GF J Appl Microbiol; 2005; 99(6):1495-502. PubMed ID: 16313422 [TBL] [Abstract][Full Text] [Related]
3. A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation. Gerez CL; Dallagnol A; Rollán G; Font de Valdez G Food Microbiol; 2012 Dec; 32(2):427-30. PubMed ID: 22986210 [TBL] [Abstract][Full Text] [Related]
4. Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Gerez CL; Rollán GC; de Valdez GF Lett Appl Microbiol; 2006 May; 42(5):459-64. PubMed ID: 16620203 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of whey proteins by Lactobacillus acidophilus, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium. Pescuma M; Hébert EM; Mozzi F; Valdez GF J Appl Microbiol; 2007 Nov; 103(5):1738-46. PubMed ID: 17953584 [TBL] [Abstract][Full Text] [Related]
6. Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Robert H; Gabriel V; Fontagné-Faucher C Int J Food Microbiol; 2009 Sep; 135(1):53-9. PubMed ID: 19651455 [TBL] [Abstract][Full Text] [Related]
7. Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. Di Cagno R; De Angelis M; Gallo G; Settanni L; Berloco MG; Siragusa S; Parente E; Corsetti A; Gobbetti M J Appl Microbiol; 2007 Oct; 103(4):821-35. PubMed ID: 17897184 [TBL] [Abstract][Full Text] [Related]
8. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content. Pescuma M; Hébert EM; Mozzi F; Font de Valdez G Food Microbiol; 2008 May; 25(3):442-51. PubMed ID: 18355669 [TBL] [Abstract][Full Text] [Related]
9. Redox potential to discriminate among species of lactic acid bacteria. Brasca M; Morandi S; Lodi R; Tamburini A J Appl Microbiol; 2007 Nov; 103(5):1516-24. PubMed ID: 17953562 [TBL] [Abstract][Full Text] [Related]
10. Detection of arc genes related with the ethyl carbamate precursors in wine lactic acid bacteria. Araque I; Gil J; Carreté R; Bordons A; Reguant C J Agric Food Chem; 2009 Mar; 57(5):1841-7. PubMed ID: 19219988 [TBL] [Abstract][Full Text] [Related]
11. Diversity and technological potential of lactic acid bacteria of wheat flours. Alfonzo A; Ventimiglia G; Corona O; Di Gerlando R; Gaglio R; Francesca N; Moschetti G; Settanni L Food Microbiol; 2013 Dec; 36(2):343-54. PubMed ID: 24010616 [TBL] [Abstract][Full Text] [Related]
12. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Alvarez-Sieiro P; Redruello B; Ladero V; Martín MC; Fernández M; Alvarez MA Can J Microbiol; 2016 May; 62(5):422-30. PubMed ID: 27021684 [TBL] [Abstract][Full Text] [Related]
13. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Dallagnol AM; Pescuma M; De Valdez GF; Rollán G Appl Microbiol Biotechnol; 2013 Apr; 97(7):3129-40. PubMed ID: 23129182 [TBL] [Abstract][Full Text] [Related]
14. Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Di Cagno R; De Angelis M; Lavermicocca P; De Vincenzi M; Giovannini C; Faccia M; Gobbetti M Appl Environ Microbiol; 2002 Feb; 68(2):623-33. PubMed ID: 11823200 [TBL] [Abstract][Full Text] [Related]
15. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. Songré-Ouattara LT; Mouquet-Rivier C; Icard-Vernière C; Humblot C; Diawara B; Guyot JP Int J Food Microbiol; 2008 Dec; 128(2):395-400. PubMed ID: 18937991 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of intestinal lactobacilli strains capable of degrading immunotoxic peptides present in gluten. Duar RM; Clark KJ; Patil PB; Hernández C; Brüning S; Burkey TE; Madayiputhiya N; Taylor SL; Walter J J Appl Microbiol; 2015 Feb; 118(2):515-27. PubMed ID: 25376327 [TBL] [Abstract][Full Text] [Related]
17. Reduction of alpha-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. LeBlanc JG; Garro MS; Silvestroni A; Connes C; Piard JC; Sesma F; Savoy de Giori G J Appl Microbiol; 2004; 97(4):876-81. PubMed ID: 15357738 [TBL] [Abstract][Full Text] [Related]
18. Proteolytic systems of lactic acid bacteria. Savijoki K; Ingmer H; Varmanen P Appl Microbiol Biotechnol; 2006 Jul; 71(4):394-406. PubMed ID: 16628446 [TBL] [Abstract][Full Text] [Related]
19. Vanillin production from simple phenols by wine-associated lactic acid bacteria. Bloem A; Bertrand A; Lonvaud-Funel A; de Revel G Lett Appl Microbiol; 2007 Jan; 44(1):62-7. PubMed ID: 17209816 [TBL] [Abstract][Full Text] [Related]
20. Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice. Chiu HH; Tsai CC; Hsih HY; Tsen HY J Appl Microbiol; 2008 Feb; 104(2):605-12. PubMed ID: 17927755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]