These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19146673)

  • 1. BFL: a node and edge betweenness based fast layout algorithm for large scale networks.
    Hashimoto TB; Nagasaki M; Kojima K; Miyano S
    BMC Bioinformatics; 2009 Jan; 10():19. PubMed ID: 19146673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new dynamical layout algorithm for complex biochemical reaction networks.
    Wegner K; Kummer U
    BMC Bioinformatics; 2005 Aug; 6():212. PubMed ID: 16124872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Exploration With Embedding-Guided Layouts.
    Shen L; Tai Z; Shen E; Wang J
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3693-3708. PubMed ID: 37022062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software.
    Jacomy M; Venturini T; Heymann S; Bastian M
    PLoS One; 2014; 9(6):e98679. PubMed ID: 24914678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clone temporal centrality measures for incomplete sequences of graph snapshots.
    Hanke M; Foraita R
    BMC Bioinformatics; 2017 May; 18(1):261. PubMed ID: 28511665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering 1-dimensional periodic network using betweenness centrality.
    Fu N; Suppakitpaisarn V
    Comput Soc Netw; 2016; 3(1):6. PubMed ID: 29355216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Scalable Method for Readable Tree Layouts.
    Gray K; Li M; Ahmed R; Rahman MK; Azad A; Kobourov S; Borner K
    IEEE Trans Vis Comput Graph; 2024 Feb; 30(2):1564-1578. PubMed ID: 37159326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks.
    Frasca M; Grossi G; Gliozzo J; Mesiti M; Notaro M; Perlasca P; Petrini A; Valentini G
    BMC Bioinformatics; 2018 Oct; 19(Suppl 10):353. PubMed ID: 30367594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization system to identify structurally vulnerable links in OHT railway network in semiconductor FAB using betweenness centrality.
    Choi J; Park Y; Choi Y; Kim S; Lee H; Park H
    PLoS One; 2024; 19(7):e0307059. PubMed ID: 38995881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FragViz: visualization of fragmented networks.
    Stajdohar M; Mramor M; Zupan B; Demšar J
    BMC Bioinformatics; 2010 Sep; 11():475. PubMed ID: 20860802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pangenome graph layout by Path-Guided Stochastic Gradient Descent.
    Heumos S; Guarracino A; Schmelzle JM; Li J; Zhang Z; Hagmann J; Nahnsen S; Prins P; Garrison E
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38960860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Higher-Order Graph Clustering.
    Yin H; Benson AR; Leskovec J; Gleich DF
    KDD; 2017 Aug; 2017():555-564. PubMed ID: 29770258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Based Virtual Screening Based on the Graph Edit Distance.
    Rica E; Álvarez S; Serratosa F
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation.
    Xiang N; Wang Q; You M
    Sci Rep; 2023 Oct; 13(1):17110. PubMed ID: 37816806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets.
    Ko ME; Williams CM; Fread KI; Goggin SM; Rustagi RS; Fragiadakis GK; Nolan GP; Zunder ER
    Nat Protoc; 2020 Feb; 15(2):398-420. PubMed ID: 31932774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combing the hairball with BioFabric: a new approach for visualization of large networks.
    Longabaugh WJ
    BMC Bioinformatics; 2012 Oct; 13():275. PubMed ID: 23102059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Socio-ecological network structures from process graphs.
    Lao A; Cabezas H; Orosz Á; Friedler F; Tan R
    PLoS One; 2020; 15(8):e0232384. PubMed ID: 32750052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers.
    Maguire JB; Grattarola D; Mulligan VK; Klyshko E; Melo H
    PLoS Comput Biol; 2021 Sep; 17(9):e1009037. PubMed ID: 34570773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and characterizing nodes important to community structure using the spectrum of the graph.
    Wang Y; Di Z; Fan Y
    PLoS One; 2011; 6(11):e27418. PubMed ID: 22110644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Complex Network Analysis for Optimization of Water Distribution Networks.
    Sitzenfrei R; Wang Q; Kapelan Z; Savić D
    Water Resour Res; 2020 Aug; 56(8):e2020WR027929. PubMed ID: 32999510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.