BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19146823)

  • 1. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin.
    Arias M; Orduz S; Lemeshko VV
    Biochim Biophys Acta; 2009 Feb; 1788(2):532-7. PubMed ID: 19146823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical hypothesis of toxicity of the Cry toxins for mosquito larvae.
    Lemeshko VV; Orduz S
    Biosci Rep; 2013 Jan; 33(1):125-36. PubMed ID: 23083299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilization of mitochondria and red blood cells by polycationic peptides BTM-P1 and retro-BTM-P1.
    Lemeshko VV
    Peptides; 2011 Oct; 32(10):2010-20. PubMed ID: 21907745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria permeabilization by a novel polycation peptide BTM-P1.
    Lemeshko VV; Arias M; Orduz S
    J Biol Chem; 2005 Apr; 280(16):15579-86. PubMed ID: 15713682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytolytic activity of peptides derived from the Cry11Bb insecticidal toxin of B. thuringiensis subsp. medellin.
    Rendon-Marin S; Quintero-Gil C; Lemeshko VV; Orduz S
    Arch Biochem Biophys; 2021 Jun; 704():108891. PubMed ID: 33901485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BTM-P1 polycationic peptide biological activity and 3D-dimensional structure.
    Segura C; Guzmán F; Salazar LM; Patarroyo ME; Orduz S; Lemeshko V
    Biochem Biophys Res Commun; 2007 Feb; 353(4):908-14. PubMed ID: 17207468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties.
    Lemeshko VV
    Biochim Biophys Acta; 2013 Mar; 1828(3):1047-56. PubMed ID: 23262194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation pattern and toxicity of the Cry11Bb1 toxin of Bacillus thuringiensis subsp. medellin.
    Segura C; Guzman F; Patarroyo ME; Orduz S
    J Invertebr Pathol; 2000 Jul; 76(1):56-62. PubMed ID: 10963404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive interactions of amphipathic polycationic peptides and cationic fluorescent probes with lipid membrane: experimental approaches and computational model.
    Lemeshko VV
    Arch Biochem Biophys; 2014 Mar; 545():167-78. PubMed ID: 24500436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell permeabilization by hypotonic treatments, saponin, and anticancer avicins.
    Arias M; Quijano JC; Haridas V; Gutterman JU; Lemeshko VV
    Biochim Biophys Acta; 2010 Jun; 1798(6):1189-96. PubMed ID: 20346345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins.
    Dalla Serra M; Fagiuoli G; Nordera P; Bernhart I; Della Volpe C; Di Giorgio D; Ballio A; Menestrina G
    Mol Plant Microbe Interact; 1999 May; 12(5):391-400. PubMed ID: 10226372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haemolytic and cytotoxic action of latarcin Ltc2a.
    Vorontsova OV; Egorova NS; Arseniev AS; Feofanov AV
    Biochimie; 2011 Feb; 93(2):227-41. PubMed ID: 20887768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells.
    Vaucher RA; Teixeira ML; Brandelli A
    Curr Microbiol; 2010 Jan; 60(1):1-5. PubMed ID: 19727943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3.
    Choi H; Hwang JS; Kim H; Lee DG
    Biochem Biophys Res Commun; 2013 Oct; 440(1):94-8. PubMed ID: 24041699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.
    Chen YQ; Min C; Sang M; Han YY; Ma X; Xue XQ; Zhang SQ
    Peptides; 2010 Aug; 31(8):1504-10. PubMed ID: 20493915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.