These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19146851)

  • 1. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice.
    Cho W; Messing A
    Exp Cell Res; 2009 Apr; 315(7):1260-72. PubMed ID: 19146851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance.
    Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K
    Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function.
    Lin NH; Yang AW; Chang CH; Perng MD
    FASEB J; 2021 May; 35(5):e21614. PubMed ID: 33908669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Generation of mice with glial cell dysfunction].
    Tanaka K; Lee HU; Ikenaka K
    Brain Nerve; 2007 Jul; 59(7):747-53. PubMed ID: 17663146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability.
    Chen YS; Lim SC; Chen MH; Quinlan RA; Perng MD
    Exp Cell Res; 2011 Oct; 317(16):2252-66. PubMed ID: 21756903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining the concept of GFAP toxicity in Alexander disease.
    Messing A
    J Neurodev Disord; 2019 Dec; 11(1):27. PubMed ID: 31838996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; NoƩ E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
    Tian R; Gregor M; Wiche G; Goldman JE
    Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease.
    Bachetti T; Di Zanni E; Balbi P; Ravazzolo R; Sechi G; Ceccherini I
    Exp Cell Res; 2012 Sep; 318(15):1844-54. PubMed ID: 22705585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease.
    LaPash Daniels CM; Paffenroth E; Austin EV; Glebov K; Lewis D; Walter J; Messing A
    PLoS One; 2015; 10(9):e0138132. PubMed ID: 26378915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial fibrillary acidic protein is pathologically modified in Alexander disease.
    Lin NH; Jian WS; Snider N; Perng MD
    J Biol Chem; 2024 Jul; 300(7):107402. PubMed ID: 38782207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease.
    Tang G; Xu Z; Goldman JE
    J Biol Chem; 2006 Dec; 281(50):38634-43. PubMed ID: 17038307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease.
    Hagemann TL; Coyne S; Levin A; Wang L; Feany MB; Messing A
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.
    Hagemann TL; Powers B; Mazur C; Kim A; Wheeler S; Hung G; Swayze E; Messing A
    Ann Neurol; 2018 Jan; 83(1):27-39. PubMed ID: 29226998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.