BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

771 related articles for article (PubMed ID: 19146915)

  • 21. Involvement of GABAergic modulation of the nucleus submedius (Sm) morphine-induced antinociception.
    Jia H; Xie YF; Xiao DQ; Tang JS
    Pain; 2004 Mar; 108(1-2):28-35. PubMed ID: 15109504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats.
    Lane DA; Patel PA; Morgan MM
    Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors.
    Flores JA; El Banoua F; Galán-Rodríguez B; Fernandez-Espejo E
    Pain; 2004 Jul; 110(1-2):205-14. PubMed ID: 15275769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intra-periaqueductal grey microinjections of an imidazo[1,2-b]pyridazine derivative, DM2, affects rostral ventromedial medulla cell activity and shows antinociceptive effect.
    Palazzo E; Rimoli MG; De Chiaro M; Guida F; Melisi D; Curcio A; de Novellis V; Marabese I; Rossi F; Abignente E; Maione S
    Neuropharmacology; 2010 Mar; 58(3):660-7. PubMed ID: 19944111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance.
    Morgan MM; Clayton CC; Lane DA
    Neuroscience; 2003; 118(1):227-32. PubMed ID: 12676152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased level of neuronal phosphoinositide 3-kinase gamma by the activation of mu-opioid receptor in the mouse periaqueductal gray matter: further evidence for the implication in morphine-induced antinociception.
    Narita M; Imai S; Narita M; Kasukawa A; Yajima Y; Suzuki T
    Neuroscience; 2004; 124(3):515-21. PubMed ID: 14980723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endogenous opioids are involved in morphine and dipyrone analgesic potentiation in the tail flick test in rats.
    Hernández-Delgadillo GP; Cruz SL
    Eur J Pharmacol; 2006 Sep; 546(1-3):54-9. PubMed ID: 16914138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats.
    Tortorici V; Nogueira L; Salas R; Vanegas H
    Pain; 2003 Mar; 102(1-2):9-16. PubMed ID: 12620592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anxiolytic-like effects produced by bilateral lesion of the periaqueductal gray in mice: Influence of concurrent nociceptive stimulation.
    Mendes-Gomes J; Nunes-de-Souza RL
    Behav Brain Res; 2009 Nov; 203(2):180-7. PubMed ID: 19410607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microinjection of morphine into thalamic nucleus submedius depresses bee venom-induced inflammatory pain in the rat.
    Feng J; Jia N; Han LN; Huang FS; Xie YF; Liu J; Tang JS
    J Pharm Pharmacol; 2008 Oct; 60(10):1355-63. PubMed ID: 18812029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception.
    Loyd DR; Morgan MM; Murphy AZ
    Neuroscience; 2007 Jun; 147(2):456-68. PubMed ID: 17540508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception.
    Lei J; Sun T; Lumb BM; You HJ
    Exp Neurol; 2014 Jul; 257():88-94. PubMed ID: 24792920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter.
    Pelegrini-da-Silva A; Rosa E; Guethe LM; Juliano MA; Prado WA; Martins AR
    Neuroscience; 2009 Dec; 164(3):1263-73. PubMed ID: 19747525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defensive-like behaviors and antinociception induced by NMDA injection into the periaqueductal gray of mice depend on nitric oxide synthesis.
    Miguel TT; Nunes-de-Souza RL
    Brain Res; 2006 Mar; 1076(1):42-8. PubMed ID: 16476419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic morphine treatment induces functional delta-opioid receptors in amygdala neurons that project to periaqueductal grey.
    Chieng B; Christie MJ
    Neuropharmacology; 2009 Sep; 57(4):430-7. PubMed ID: 19580818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrathecal co-administration of morphine and nimodipine produces higher antinociceptive effect by synergistic interaction as evident by injecting different doses of each drug in rats.
    Gupta H; Verma D; Ahuja RK; Srivastava DN; Wadhwa S; Ray SB
    Eur J Pharmacol; 2007 Apr; 561(1-3):46-53. PubMed ID: 17320072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermittent dosing prolongs tolerance to the antinociceptive effect of morphine microinjection into the periaqueductal gray.
    Morgan MM; Tierney BW; Ingram SL
    Brain Res; 2005 Oct; 1059(2):173-8. PubMed ID: 16182261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new role for the renin-angiotensin system in the rat periaqueductal gray matter: angiotensin receptor-mediated modulation of nociception.
    Pelegrini-da-Silva A; Martins AR; Prado WA
    Neuroscience; 2005; 132(2):453-63. PubMed ID: 15802196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-specific modulation of morphine and swim-induced antinociception following thyrotropin-releasing hormone in the rat periaqueductal gray.
    Robertson JA; Bodnar RJ
    Pain; 1993 Oct; 55(1):71-84. PubMed ID: 8278212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study.
    Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC
    Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.