These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19147103)

  • 1. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.
    Zheng H; Ohno Y; Nakamori T; Suye S
    J Biosci Bioeng; 2009 Jan; 107(1):16-20. PubMed ID: 19147103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.
    Ohno Y; Nakamori T; Zheng H; Suye S
    Biosci Biotechnol Biochem; 2008 May; 72(5):1278-82. PubMed ID: 18460807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-transfer function of NAD+-immobilized alginic acid.
    Nakamura Y; Suye S; Kira J; Tera H; Tabata I; Senda M
    Biochim Biophys Acta; 1996 Mar; 1289(2):221-5. PubMed ID: 8600977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ regeneration of NADH via lipoamide dehydrogenase-catalyzed electron transfer reaction evidenced by spectroelectrochemistry.
    Tam TK; Chen B; Lei C; Liu J
    Bioelectrochemistry; 2012 Aug; 86():92-6. PubMed ID: 22497727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of L-malic acid by malic enzyme biocatalysis with CO
    Shi J; Fan Y; Jiang X; Li X; Li S; Feng Y; Xue S
    Bioresour Technol; 2024 Jul; 403():130843. PubMed ID: 38777233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic CO2 fixation by regenerating reduced cofactor NADH during Calvin Cycle using glassy carbon electrode.
    Ali I; Amiri S; Ullah N; Younas M; Rezakazemi M
    PLoS One; 2020; 15(9):e0239340. PubMed ID: 32941542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitized NADH formation system with multilayer TiO2 film.
    Sagawa T; Sueyoshi R; Kawaguchi M; Kudo M; Ihara H; Ohkubo K
    Chem Commun (Camb); 2004 Apr; (7):814-5. PubMed ID: 15045077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of mediator-carbon nanotube composites for dehydrogenases and peroxidases based biosensors.
    Arvinte A; Rotariu L; Bala C; Gurban AM
    Bioelectrochemistry; 2009 Sep; 76(1-2):107-14. PubMed ID: 19467932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme.
    Karsten WE; Hwang CC; Cook PF
    Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Cook PF
    Biochemistry; 2007 Dec; 46(50):14578-88. PubMed ID: 18027982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malic acid production by an electrochemical reduction system combined with the use of diaphorase and methylviologen.
    Maeda H; Kajiwara S
    Biotechnol Bioeng; 1985 May; 27(5):596-602. PubMed ID: 18553714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADP-malic enzyme from the C4 plant Flaveria bidentis: nucleotide substrate specificity.
    Ashton AR
    Arch Biochem Biophys; 1997 Sep; 345(2):251-8. PubMed ID: 9308897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of myoglobin immobilized on Fe2O3 nanoparticle-sodium alginate-ionic liquid composite-modified electrode.
    Zhan T; Xi M; Wang Y; Sun W; Hou W
    J Colloid Interface Sci; 2010 Jun; 346(1):188-93. PubMed ID: 20303500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of a mediator onto carbon cloth electrode and employment of the modified electrode to an electroenzymatic bioreactor.
    Jeong ES; Sathishkumar M; Jayabalan R; Jeong SH; Park SY; Mun SP; Yun SE
    J Microbiol Biotechnol; 2012 Oct; 22(10):1406-11. PubMed ID: 23075793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FAD-mediated enzymatic conversion of NAD+ to NADH: application to chiral synthesis of L-lactate.
    Leonida MD; Sobolov SB; Fry AJ
    Bioorg Med Chem Lett; 1998 Oct; 8(20):2819-24. PubMed ID: 9873629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system.
    Guo R; Zhang L; Jiang Z; Cao Y; Ding Y; Jiang X
    Biomacromolecules; 2007 Mar; 8(3):843-50. PubMed ID: 17291037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation.
    Milczarek G
    Langmuir; 2009 Sep; 25(17):10345-53. PubMed ID: 19456182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced resistance of polyelectrolyte multilayer microcapsules to pepsin erosion and release properties of encapsulated indomethacin.
    Wang C; Ye S; Dai L; Liu X; Tong Z
    Biomacromolecules; 2007 May; 8(5):1739-44. PubMed ID: 17458935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.