These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19147143)

  • 1. Posturographic analysis through markerless motion capture without ground reaction forces measurement.
    Corazza S; Andriacchi TP
    J Biomech; 2009 Feb; 42(3):370-4. PubMed ID: 19147143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of three methods to estimate the center of mass during balance assessment.
    Lafond D; Duarte M; Prince F
    J Biomech; 2004 Sep; 37(9):1421-6. PubMed ID: 15275850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comments about the article titled: comparison of three methods to estimate the center of mass during balance assessment, written by D. Lafond, M. Duarte, F. Prince (37 (2004) 1421-1426).
    Caron O
    J Biomech; 2005 Aug; 38(8):1737-8; author reply 1738-40. PubMed ID: 15958235
    [No Abstract]   [Full Text] [Related]  

  • 4. On modeling center of foot pressure distortion through a medium.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):345-52. PubMed ID: 15759564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint segmental kinematic trunk motion and C.O.P. patterns for multifactorial posturographic analysis.
    D'Amico M; Roncoletta P
    Stud Health Technol Inform; 2002; 91():149-52. PubMed ID: 15457713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postural sway and joint kinematics during quiet standing are affected by lumbar extensor fatigue.
    Madigan ML; Davidson BS; Nussbaum MA
    Hum Mov Sci; 2006 Dec; 25(6):788-99. PubMed ID: 16884800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative characterization of postural sway during human quiet standing using a thin pressure distribution measurement system.
    Nomura K; Fukada K; Azuma T; Hamasaki T; Sakoda S; Nomura T
    Gait Posture; 2009 Jun; 29(4):654-7. PubMed ID: 19278852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two kinematic synergies in voluntary whole-body movements during standing.
    Freitas SM; Duarte M; Latash ML
    J Neurophysiol; 2006 Feb; 95(2):636-45. PubMed ID: 16267118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the 3-D center of mass excursion from force-plate data during standing.
    Barbier F; Allard P; Guelton K; Colobert B; Godillon-Maquinghen AP
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):31-7. PubMed ID: 12797723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of postural control in quiet standing using center of mass acceleration: comparison among the young, the elderly, and people with stroke.
    Yu E; Abe M; Masani K; Kawashima N; Eto F; Haga N; Nakazawa K
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1133-9. PubMed ID: 18503811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints.
    Mathiyakom W; McNitt-Gray JL; Requejo P; Costa K
    Clin Biomech (Bristol); 2005 Jan; 20(1):105-11. PubMed ID: 15567544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of cross time-frequency analysis to postural sway behavior: the effects of aging and visual systems.
    Shin YJ; Gobert D; Sung SH; Powers EJ; Park JB
    IEEE Trans Biomed Eng; 2005 May; 52(5):859-68. PubMed ID: 15887535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions.
    Wang Y; Zatsiorsky VM; Latash ML
    Clin Neurophysiol; 2006 Jan; 117(1):41-56. PubMed ID: 16364687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors.
    Kamnik R; Shi JQ; Murray-Smith R; Bajd T
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):40-52. PubMed ID: 15813405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of the force applied to handles into centre of pressure calculation modifies the amplitude of centre of pressure shifts.
    NoƩ F; Quaine F
    Gait Posture; 2006 Nov; 24(3):382-5. PubMed ID: 16300948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of carried weight on random motion and traditional measures of postural sway.
    Schiffman JM; Bensel CK; Hasselquist L; Gregorczyk KN; Piscitelle L
    Appl Ergon; 2006 Sep; 37(5):607-14. PubMed ID: 16356467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing.
    Huang SC; Lu TW; Chen HL; Wang TM; Chou LS
    Med Eng Phys; 2008 Oct; 30(8):968-75. PubMed ID: 18243037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.