These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 19147531)
1. Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. Fujiwara T; Misumi O; Tashiro K; Yoshida Y; Nishida K; Yagisawa F; Imamura S; Yoshida M; Mori T; Tanaka K; Kuroiwa H; Kuroiwa T DNA Res; 2009 Feb; 16(1):59-72. PubMed ID: 19147531 [TBL] [Abstract][Full Text] [Related]
2. Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Imoto Y; Fujiwara T; Yoshida Y; Kuroiwa H; Maruyama S; Kuroiwa T Protoplasma; 2010 May; 241(1-4):63-74. PubMed ID: 20148273 [TBL] [Abstract][Full Text] [Related]
3. The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Fujiwara T; Kuroiwa H; Yagisawa F; Ohnuma M; Yoshida Y; Yoshida M; Nishida K; Misumi O; Watanabe S; Tanaka K; Kuroiwa T Plant Cell; 2010 Mar; 22(3):772-81. PubMed ID: 20348431 [TBL] [Abstract][Full Text] [Related]
4. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. Kanesaki Y; Imamura S; Minoda A; Tanaka K DNA Res; 2012 Jun; 19(3):289-303. PubMed ID: 22518007 [TBL] [Abstract][Full Text] [Related]
5. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cell-cycle-driven and light-driven gene expression in a synchronous culture system in the unicellular rhodophyte Cyanidioschyzon merolae. Moriyama T; Terasawa K; Sekine K; Toyoshima M; Koike M; Fujiwara M; Sato N Microbiology (Reading); 2010 Jun; 156(Pt 6):1730-1737. PubMed ID: 20223803 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae. Watanabe S; Hanaoka M; Ohba Y; Ono T; Ohnuma M; Yoshikawa H; Taketani S; Tanaka K Plant Cell Physiol; 2013 Aug; 54(8):1289-95. PubMed ID: 23700350 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the nuclear- and plastid-encoded secA-homologous genes in the unicellular red alga Cyanidioschyzon merolae. Koyama Y; Takimoto K; Kojima A; Asai K; Matsuoka S; Mitsui T; Matsumoto K; Hara H; Ohta N Biosci Biotechnol Biochem; 2011; 75(10):2073-8. PubMed ID: 21979100 [TBL] [Abstract][Full Text] [Related]
10. Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Misumi O; Matsuzaki M; Nozaki H; Miyagishima SY; Mori T; Nishida K; Yagisawa F; Yoshida Y; Kuroiwa H; Kuroiwa T Plant Physiol; 2005 Feb; 137(2):567-85. PubMed ID: 15681662 [TBL] [Abstract][Full Text] [Related]
11. The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. Imoto Y; Yoshida Y; Yagisawa F; Kuroiwa H; Kuroiwa T J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S117-36. PubMed ID: 21844584 [TBL] [Abstract][Full Text] [Related]
13. Molecular phylogeny and evolution of the plastid and nuclear encoded cbbX genes in the unicellular red alga Cyanidioschyzon merolae. Fujita K; Ehira S; Tanaka K; Asai K; Ohta N Genes Genet Syst; 2008 Apr; 83(2):127-33. PubMed ID: 18506096 [TBL] [Abstract][Full Text] [Related]
14. Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. Minoda A; Nagasawa K; Hanaoka M; Horiuchi M; Takahashi H; Tanaka K Plant Mol Biol; 2005 Oct; 59(3):375-85. PubMed ID: 16235106 [TBL] [Abstract][Full Text] [Related]
15. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Barbier G; Oesterhelt C; Larson MD; Halgren RG; Wilkerson C; Garavito RM; Benning C; Weber AP Plant Physiol; 2005 Feb; 137(2):460-74. PubMed ID: 15710685 [TBL] [Abstract][Full Text] [Related]
16. Functional analysis of the plastid and nuclear encoded CbbX proteins of Cyanidioschyzon merolae. Fujita K; Tanaka K; Sadaie Y; Ohta N Genes Genet Syst; 2008 Apr; 83(2):135-42. PubMed ID: 18506097 [TBL] [Abstract][Full Text] [Related]
17. Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Moriyama T; Tajima N; Sekine K; Sato N Genome Biol Evol; 2014 Jan; 6(1):228-37. PubMed ID: 24407855 [TBL] [Abstract][Full Text] [Related]
18. Day/Night Separation of Oxygenic Energy Metabolism and Nuclear DNA Replication in the Unicellular Red Alga Miyagishima SY; Era A; Hasunuma T; Matsuda M; Hirooka S; Sumiya N; Kondo A; Fujiwara T mBio; 2019 Jul; 10(4):. PubMed ID: 31266864 [TBL] [Abstract][Full Text] [Related]
19. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Mori N; Moriyama T; Sato N FEBS Open Bio; 2019 Jan; 9(1):114-128. PubMed ID: 30652079 [TBL] [Abstract][Full Text] [Related]
20. Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. Fujiwara T; Ohnuma M; Yoshida M; Kuroiwa T; Hirano T PLoS One; 2013; 8(9):e73608. PubMed ID: 24039997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]