BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 191477)

  • 21. Cyclic adenosine 3',5'-monophosphate-stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR; Olsson RA
    J Biol Chem; 1973 Feb; 248(4):1496-8. PubMed ID: 4346960
    [No Abstract]   [Full Text] [Related]  

  • 22. Reaction mechanism of p-nitrophenylphosphatase of sarcoplasmic reticulum. Evidence for two kinds of phosphorylated intermediate with and without bound p-nitrophenol.
    Nakamura Y; Tonomura Y
    J Biochem; 1978 Feb; 83(2):571-83. PubMed ID: 24625
    [No Abstract]   [Full Text] [Related]  

  • 23. A phospholamban protein phosphatase activity associated with cardiac sarcoplasmic reticulum.
    Kranias EG; Di Salvo J
    J Biol Chem; 1986 Aug; 261(22):10029-32. PubMed ID: 3015916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guanosine triphosphate utilization by canine cardiac muscle sarcoplasmic reticulum.
    Ogurusu T; Wakabayashi S; Watanabe T; Shigekawa M
    J Biochem; 1989 Oct; 106(4):599-605. PubMed ID: 2532646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of a Ca2+ dependent protein kinase and a protein phosphatase on the Ca2+ -phosphate transport ATPase.
    Hörl WH; Heilmeyer LM
    Adv Exp Med Biol; 1977; 81():385-94. PubMed ID: 197823
    [No Abstract]   [Full Text] [Related]  

  • 26. Phosphoprotein phosphatase activity of Novikoff hepatoma nucleoli.
    Olson MO; Guetzow K
    Biochem Biophys Res Commun; 1976 Jun; 70(3):717-22. PubMed ID: 180995
    [No Abstract]   [Full Text] [Related]  

  • 27. [Characterization of the calcium transport cycle of sarcoplasmic reticulum by inorganic phosphate including the function of magnesium (author's transl)].
    Plank B; Preis P; Hellmann G; Kolassa N; Suko J
    Wien Klin Wochenschr; 1980; 92(20):703-6. PubMed ID: 7467344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation by inorganic phosphate of sarcoplasmic membranes.
    Rauch B; Chak DV; Hasselbach W
    Z Naturforsch C Biosci; 1977; 32(9-10):828-34. PubMed ID: 145122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein phosphatases from canine heart: evidence for four different fractions of the enzyme.
    Li HC
    FEBS Lett; 1975 Jul; 55(1):134-7. PubMed ID: 166882
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of soluble and microsomal adenosine 3',5'-monophosphate-dependent protein kinases from rabbit heart.
    Laria PJ; Zwerling LJ; Morkin E
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():133-41. PubMed ID: 242043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium in the control of cardiac contraction and relaxation: the cardiac relaxing system (sarcoplasmic reticulum fragments) and the effects of ionophoric antibiotics.
    Entman ML; Schwartz A
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():437-50. PubMed ID: 4283216
    [No Abstract]   [Full Text] [Related]  

  • 32. Acylphosphatase stimulates Ca2+ transport and Ca(2+)-dependent ATPase activity in cardiac sarcoplasmic reticulum.
    Fiorillo C; Nediani C; Marchetti E; Pacini A; Liguri G; Nassi P
    Biochem Mol Biol Int; 1996 May; 39(2):387-94. PubMed ID: 8799467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of a novel mammalian protein phosphatase with activity for phosphotyrosine.
    Foulkes JG; Howard RF; Ziemiecki A
    FEBS Lett; 1981 Aug; 130(2):197-200. PubMed ID: 6169552
    [No Abstract]   [Full Text] [Related]  

  • 34. [cAMP, calmodulin-dependent stimulation and stability to proteolysis of Ca 2+ transport in the heart sarcoplasmic reticulum].
    Antipenko AE; Sviderskaia EV; Dizhe GP; Krasnovskaia IE
    Biokhimiia; 1989 Dec; 54(12):2023-9. PubMed ID: 2561265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of cyproheptadine on Ca2+,Mg(2+)-ATPase activities and 45Ca2+ uptake function in canine myocardial sarcoplasmic reticulum].
    Xin HB; Zhang BH
    Yao Xue Xue Bao; 1993; 28(2):92-6. PubMed ID: 8328290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of the membrane protein phospholamban in cyclic AMP-mediated regulation of calcium transport by sarcoplasmic reticulum.
    Tada M; Kirchberger MA
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():265-72. PubMed ID: 201984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of passive efflux pathways in determining steady-state loading in canine cardiac sarcoplasmic reticulum vesicles.
    Feher JJ; Alderson BH; Lipford GB
    Prog Clin Biol Res; 1988; 252():149-54. PubMed ID: 2450359
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of nucleoside phosphates and salts on the activity of a heart phosphoprotein phosphatase and its catalytic subunit.
    Li HC; Hsiao KJ
    Eur J Biochem; 1977 Jul; 77(2):383-91. PubMed ID: 19251
    [No Abstract]   [Full Text] [Related]  

  • 39. The relation between calcium ion transport and adenylate cyclase activity in myocardial sarcoplasmic-reticulum preparations.
    Gillibrand IM; Miall PA
    Biochem J; 1972 Jul; 128(3):109P. PubMed ID: 4634825
    [No Abstract]   [Full Text] [Related]  

  • 40. Ca2+ regulation of sarcoplasmic reticular protein phosphatase activity.
    Varsányi M; Heilmeyer LM
    Biochemistry; 1979 Oct; 18(22):4869-75. PubMed ID: 228702
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.