BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19147899)

  • 1. Radiation dose to trabecular bone marrow stem cells from (3)H, (14)C and selected alpha-emitters incorporated in a bone remodeling compartment.
    Nie H; Richardson RB
    Phys Med Biol; 2009 Feb; 54(4):963-79. PubMed ID: 19147899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of trabecular bone remodelling and absorbed dose coefficients for tritium and 14C.
    Richardson RB; Nie HL; Chettle DR
    Radiat Prot Dosimetry; 2007; 127(1-4):158-62. PubMed ID: 17652111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbed fractions for alpha-particles in tissues of trabecular bone: considerations of marrow cellularity within the ICRP reference male.
    Watchman CJ; Jokisch DW; Patton PW; Rajon DA; Sgouros G; Bolch WE
    J Nucl Med; 2005 Jul; 46(7):1171-85. PubMed ID: 16000287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-particle doses to cells of the bone remodeling cycle from alpha-particle-emitting bone-seekers: indications of an antiresorptive effect of actinides.
    Salmon PL; Onischuk YN; Bondarenko OA; Lanyon LE
    Radiat Res; 1999 Dec; 152(6 Suppl):S43-7. PubMed ID: 10564935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voxel-based models representing the male and female ICRP reference adult--the skeleton.
    Zankl M; Eckerman KF; Bolch WE
    Radiat Prot Dosimetry; 2007; 127(1-4):174-86. PubMed ID: 17545663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone.
    Bouchet LG; Jokisch DW; Bolch WE
    J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets.
    Dant JT; Richardson RB; Nie LH
    Phys Med Biol; 2013 May; 58(10):3301-19. PubMed ID: 23615276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon exposure of the skin: I. Biological effects.
    Charles MW
    J Radiol Prot; 2007 Sep; 27(3):231-52. PubMed ID: 17768326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal stem/osteoprogenitor cells: current concepts, alternate hypotheses, and relationship to the bone remodeling compartment.
    Mödder UI; Khosla S
    J Cell Biochem; 2008 Feb; 103(2):393-400. PubMed ID: 17541947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response functions for computing absorbed dose to skeletal tissues from photon irradiation.
    Eckerman KF; Bolch WE; Zankl M; Petoussi-Henss N
    Radiat Prot Dosimetry; 2007; 127(1-4):187-91. PubMed ID: 18192667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal change in microdosimetry to bone marrow and stromal progenitor cells from alpha-particle-emitting radionuclides incorporated in bone.
    Austin AL; Ellender M; Haines JW; Harrison JD; Lord BI
    Radiat Res; 1999 Dec; 152(6 Suppl):S38-42. PubMed ID: 10564934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal absorbed fractions for electrons in the adult male: considerations of a revised 50-microm definition of the bone endosteum.
    Bolch WE; Shah AP; Watchman CJ; Jokisch DW; Patton PW; Rajon DA; Zankl M; Petoussi-Henss N; Eckerman KF
    Radiat Prot Dosimetry; 2007; 127(1-4):169-73. PubMed ID: 17556345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers.
    Hauge EM; Qvesel D; Eriksen EF; Mosekilde L; Melsen F
    J Bone Miner Res; 2001 Sep; 16(9):1575-82. PubMed ID: 11547826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters.
    Harrison J
    J Radiol Prot; 2009 Jun; 29(2A):A81-A105. PubMed ID: 19454809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S values for radionuclides localized within the skeleton.
    Bouchet LG; Bolch WE; Howell RW; Rao DV
    J Nucl Med; 2000 Jan; 41(1):189-212. PubMed ID: 10647623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorbed fractions for alpha-particles in tissues of cortical bone.
    Watchman CJ; Bolch WE
    Phys Med Biol; 2009 Oct; 54(19):6009-27. PubMed ID: 19773607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipocyte spatial distributions in bone marrow: implications for skeletal dosimetry models.
    Shah AP; Patton PW; Rajon DA; Bolch WE
    J Nucl Med; 2003 May; 44(5):774-83. PubMed ID: 12732680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone.
    Bouchet LG; Bolch WE
    J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources.
    Pafundi D; Rajon D; Jokisch D; Lee C; Bolch W
    Phys Med Biol; 2010 Apr; 55(7):1785-814. PubMed ID: 20208096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.