BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 19148043)

  • 1. Administration of human peripheral blood-derived CD133+ cells accelerates functional recovery in a rat spinal cord injury model.
    Sasaki H; Ishikawa M; Tanaka N; Nakanishi K; Kamei N; Asahara T; Ochi M
    Spine (Phila Pa 1976); 2009 Feb; 34(3):249-54. PubMed ID: 19148043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field-based delivery of human CD133⁺ cells promotes functional recovery after rat spinal cord injury.
    Fujioka Y; Tanaka N; Nakanishi K; Kamei N; Nakamae T; Izumi B; Ohta R; Ochi M
    Spine (Phila Pa 1976); 2012 Jun; 37(13):E768-77. PubMed ID: 22246536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells.
    Shi M; Ishikawa M; Kamei N; Nakasa T; Adachi N; Deie M; Asahara T; Ochi M
    Stem Cells; 2009 Apr; 27(4):949-60. PubMed ID: 19353523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord.
    Kamei N; Kwon SM; Alev C; Nakanishi K; Yamada K; Masuda H; Ishikawa M; Kawamoto A; Ochi M; Asahara T
    J Neurol Sci; 2013 May; 328(1-2):41-50. PubMed ID: 23498368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The therapeutic potential of ex vivo expanded CD133+ cells derived from human peripheral blood for peripheral nerve injuries.
    Ohtsubo S; Ishikawa M; Kamei N; Kijima Y; Suzuki O; Sunagawa T; Higashi Y; Masuda H; Asahara T; Ochi M
    J Neurosurg; 2012 Oct; 117(4):787-94. PubMed ID: 22880720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of peripheral nerve after transplantation of CD133+ cells derived from human peripheral blood.
    Kijima Y; Ishikawa M; Sunagawa T; Nakanishi K; Kamei N; Yamada K; Tanaka N; Kawamata S; Asahara T; Ochi M
    J Neurosurg; 2009 Apr; 110(4):758-67. PubMed ID: 19012485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.
    Luo J; Zhang HT; Jiang XD; Xue S; Ke YQ
    Acta Neurochir (Wien); 2009 Nov; 151(11):1483-92. PubMed ID: 19499175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Umbilical cord blood-selected CD133(+) cells exhibit vasculogenic functionality in vitro and in vivo.
    Finney MR; Fanning LR; Joseph ME; Goldberg JL; Greco NJ; Bhakta S; Winter DG; Forster M; Scheid PE; Sabe M; Pompili VJ; Laughlin MJ
    Cytotherapy; 2010; 12(1):67-78. PubMed ID: 19878081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study.
    Samdani AF; Paul C; Betz RR; Fischer I; Neuhuber B
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2605-12. PubMed ID: 19881401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD133+ cells from human peripheral blood promote corticospinal axon regeneration.
    Yamamoto R; Ishikawa M; Tanaka N; Kamei N; Nakanishi K; Sasaki H; Nakamae T; Mochizuki Y; Asahara T; Ochi M
    Neuroreport; 2008 May; 19(8):799-803. PubMed ID: 18463490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.
    Zhou HL; Zhang XJ; Zhang MY; Yan ZJ; Xu ZM; Xu RX
    Neurochem Res; 2016 Oct; 41(10):2708-2718. PubMed ID: 27351200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.
    Parr AM; Kulbatski I; Tator CH
    J Neurotrauma; 2007 May; 24(5):835-45. PubMed ID: 17518538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys.
    Deng YB; Liu XG; Liu ZG; Liu XL; Liu Y; Zhou GQ
    Cytotherapy; 2006; 8(3):210-4. PubMed ID: 16793730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are purified or expanded cord blood-derived CD133+ cells better at improving cardiac function?
    Senegaglia AC; Barboza LA; Dallagiovanna B; Aita CA; Hansen P; Rebelatto CL; Aguiar AM; Miyague NI; Shigunov P; Barchiki F; Correa A; Olandoski M; Krieger MA; Brofman PR
    Exp Biol Med (Maywood); 2010 Jan; 235(1):119-29. PubMed ID: 20404026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats.
    Haider T; Höftberger R; Rüger B; Mildner M; Blumer R; Mitterbauer A; Buchacher T; Sherif C; Altmann P; Redl H; Gabriel C; Gyöngyösi M; Fischer MB; Lubec G; Ankersmit HJ
    Exp Neurol; 2015 May; 267():230-42. PubMed ID: 25797576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.