These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19148254)

  • 21. Atomic vapor filter revisited: a Cabannes scattering temperature/wind lidar at 770 nm.
    She CY; Krueger DA; Yan ZA; Hu X
    Opt Express; 2021 Feb; 29(3):4338-4362. PubMed ID: 33771015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Edge technique Doppler lidar wind measurements with high vertical resolution.
    Korb CL; Gentry BM; Li SX
    Appl Opt; 1997 Aug; 36(24):5976-83. PubMed ID: 18259439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector.
    Shangguan M; Xia H; Wang C; Qiu J; Lin S; Dou X; Zhang Q; Pan JW
    Opt Lett; 2017 Sep; 42(18):3541-3544. PubMed ID: 28914897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraviolet trifrequency Rayleigh DWL for stratosphere atmospheric wind measurements during the daytime based on an ultranarrow-bandwidth optical receiver.
    Han F; Han Y; Sun D; Hu M; Liu H; Zhou A; Zhang N; Jiang S; Chu J; Zheng J; Lan J
    Appl Opt; 2020 Feb; 59(4):1037-1048. PubMed ID: 32225240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: a. Comparison between iodine vapor filter and Fabry-Perot interferometer methods.
    She CY; Yue J; Yan ZA; Hair JW; Guo JJ; Wu SH; Liu ZS
    Appl Opt; 2007 Jul; 46(20):4434-43. PubMed ID: 17579699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.
    McGill MJ; Hart WD; McKay JA; Spinhirne JD
    Appl Opt; 1999 Oct; 38(30):6388-97. PubMed ID: 18324169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wind measurements with 355-nm molecular Doppler lidar.
    Gentry BM; Chen H; Li SX
    Opt Lett; 2000 Sep; 25(17):1231-3. PubMed ID: 18066176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere.
    Hua D; Kobayashi T
    Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver.
    Chen H; White MA; Krueger DA; She CY
    Opt Lett; 1996 Aug; 21(15):1093-5. PubMed ID: 19876263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.
    Xia H; Shangguan M; Wang C; Shentu G; Qiu J; Zhang Q; Dou X; Pan J
    Opt Lett; 2016 Nov; 41(22):5218-5221. PubMed ID: 27842097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-spectral-resolution Mie Doppler lidar based on a two-stage Fabry-Perot etalon for tropospheric wind and aerosol accurate measurement.
    Shen F; Ji J; Xie C; Wang Z; Wang B
    Appl Opt; 2019 Mar; 58(9):2216-2225. PubMed ID: 31044920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity analysis of Na narrowband wind-temperature lidar systems.
    Papen GC; Pfenninger WM; Simonich DM
    Appl Opt; 1995 Jan; 34(3):480-98. PubMed ID: 20963143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesopause-region temperature and wind measurements with pseudorandom modulation continuous-wave (PMCW) lidar at 589 nm.
    She CY; Abo M; Yue J; Williams BP; Nagasawa C; Nakamura T
    Appl Opt; 2011 Jun; 50(18):2916-26. PubMed ID: 21691356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Doppler Lidar with High Sensitivity and Large Dynamic Range for Atmospheric Wind Measurement.
    Wang L; Tan LQ; Chang B; Lu GG; Gao F; Hua DX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):958-63. PubMed ID: 30160450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation.
    Xia H; Sun D; Yang Y; Shen F; Dong J; Kobayashi T
    Appl Opt; 2007 Oct; 46(29):7120-31. PubMed ID: 17932519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A newly designed single etalon double edge Doppler wind lidar receiving optical system.
    Kim D; Kwon S; Cha H; Kim Y; Sunwoo J
    Rev Sci Instrum; 2008 Dec; 79(12):123111. PubMed ID: 19123549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements.
    Papen GC; Gardner CS; Pfenninger WM
    Appl Opt; 1995 Oct; 34(30):6950-8. PubMed ID: 21060557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus.
    Lux O; Wernham D; Bravetti P; McGoldrick P; Lecrenier O; Riede W; D'Ottavi A; De Sanctis V; Schillinger M; Lochard J; Marshall J; Lemmerz C; Weiler F; Mondin L; Ciapponi A; Kanitz T; Elfving A; Parrinello T; Reitebuch O
    Opt Lett; 2020 Mar; 45(6):1443-1446. PubMed ID: 32163987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wavelength selection and measurement error theoretical analysis on ground-based coherent differential absorption lidar using 1.53 µm wavelength for simultaneous vertical profiling of water vapor density and wind speed.
    Imaki M; Hirosawa K; Yanagisawa T; Kameyama S; Kuze H
    Appl Opt; 2020 Mar; 59(8):2238-2247. PubMed ID: 32225753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.