BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19149160)

  • 21. [Study of intraspecific variations of the bacterium Lactococcus lactis in adaptation to high acidity of the medium].
    Trenina MA; Lysenko AM; Akhverdian VZ; Mchedlishvili EB
    Mikrobiologiia; 2006; 75(1):118-26. PubMed ID: 16579453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Lactococcus lactis capable of respiring in the presence of heme].
    Liang F; Fei L; Guicheng H
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1256-9. PubMed ID: 19062653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactococcal 936-species phage attachment to surface of Lactococcus lactis.
    Geller BL; Ngo HT; Mooney DT; Su P; Dunn N
    J Dairy Sci; 2005 Mar; 88(3):900-7. PubMed ID: 15738223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress.
    Guillot A; Obis D; Mistou MY
    Int J Food Microbiol; 2000 Apr; 55(1-3):47-51. PubMed ID: 10791716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine.
    Raha AR; Varma NR; Yusoff K; Ross E; Foo HL
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):75-81. PubMed ID: 15635459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator.
    Petranovic D; Guédon E; Sperandio B; Delorme C; Ehrlich D; Renault P
    Mol Microbiol; 2004 Jul; 53(2):613-21. PubMed ID: 15228538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness.
    Roces C; Campelo AB; Veiga P; Pinto JP; Rodríguez A; Martínez B
    Int J Food Microbiol; 2009 Aug; 133(3):279-85. PubMed ID: 19559493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis.
    Cesselin B; Henry C; Gruss A; Gloux K; Gaudu P
    Appl Environ Microbiol; 2021 Nov; 87(24):e0107921. PubMed ID: 34613757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363.
    Budin-Verneuil A; Pichereau V; Auffray Y; Ehrlich D; Maguin E
    Proteomics; 2007 Jun; 7(12):2038-46. PubMed ID: 17514678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation.
    Settanni L; Massitti O; Van Sinderen D; Corsetti A
    J Appl Microbiol; 2005; 99(3):670-81. PubMed ID: 16108809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria.
    Berlec A; Jevnikar Z; Majhenic AC; Rogelj I; Strukelj B
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):158-65. PubMed ID: 16703320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of membrane proteins in Escherichia coli and Lactococcus lactis.
    Geertsma ER; Poolman B
    Methods Mol Biol; 2010; 601():17-38. PubMed ID: 20099137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterologous protein expression by Lactococcus lactis.
    Villatoro-Hernández J; Kuipers OP; Saucedo-Cárdenas O; Montes-de-Oca-Luna R
    Methods Mol Biol; 2012; 824():155-65. PubMed ID: 22160898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis.
    Michelon D; Abraham S; Ebel B; De Coninck J; Husson F; Feron G; Gervais P; Cachon R
    FEBS J; 2010 May; 277(10):2282-90. PubMed ID: 20423456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of a stress response in Lactococcus lactis is associated with a resistance to ribosomally active antibiotics.
    Dorrian JM; Briggs DA; Ridley ML; Layfield R; Kerr ID
    FEBS J; 2011 Nov; 278(21):4015-24. PubMed ID: 21848804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of dietary antioxidants and fatty acids on neutrophil mediated bacterial killing and gene expression in healthy Beagles.
    Hall JA; Chinn RM; Vorachek WR; Gorman ME; Greitl JL; Joshi DK; Jewell DE
    Vet Immunol Immunopathol; 2011 Feb; 139(2-4):217-28. PubMed ID: 21112644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the binding mechanism of the peptide receptor of the oligopeptide transport system of Lactococcus lactis.
    Lanfermeijer FC; Detmers FJ; Konings WN; Poolman B
    EMBO J; 2000 Jul; 19(14):3649-56. PubMed ID: 10899119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29.
    Miladinov N; Kuipers OP; Topisirovic L
    Arch Microbiol; 2001 Dec; 177(1):54-61. PubMed ID: 11797045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation.
    Doleyres Y; Fliss I; Lacroix C
    J Appl Microbiol; 2004; 97(3):527-39. PubMed ID: 15281933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.