These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19149176)
61. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans. Kasalický V; Zeng Y; Piwosz K; Šimek K; Kratochvilová H; Koblížek M Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29030444 [TBL] [Abstract][Full Text] [Related]
62. Time to revisit polyphasic taxonomy. Vandamme P; Peeters C Antonie Van Leeuwenhoek; 2014 Jul; 106(1):57-65. PubMed ID: 24633913 [TBL] [Abstract][Full Text] [Related]
63. Dynamics of proteo-metabolome from Rubrivivax benzoatilyticus JA2 reveals a programmed switch-off of phototrophic growth, leading to a non-cultivable state as a hyperglycemic effect. Gupta D; Sasikala C; Ramana CV J Proteomics; 2022 May; 260():104569. PubMed ID: 35354086 [TBL] [Abstract][Full Text] [Related]
64. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. Thiel V; Tank M; Bryant DA Annu Rev Plant Biol; 2018 Apr; 69():21-49. PubMed ID: 29505738 [TBL] [Abstract][Full Text] [Related]
65. Evolution of energetic metabolism: the respiration-early hypothesis. Castresana J; Saraste M Trends Biochem Sci; 1995 Nov; 20(11):443-8. PubMed ID: 8578586 [TBL] [Abstract][Full Text] [Related]
66. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels. Mukkata K; Kantachote D; Wittayaweerasak B; Techkarnjanaruk S; Boonapatcharoen N Saudi J Biol Sci; 2016 Jul; 23(4):478-87. PubMed ID: 27298580 [TBL] [Abstract][Full Text] [Related]
67. Microbial co-habitation and lateral gene transfer: what transposases can tell us. Hooper SD; Mavromatis K; Kyrpides NC Genome Biol; 2009; 10(4):R45. PubMed ID: 19393086 [TBL] [Abstract][Full Text] [Related]
68. Bacterial anoxygenic photosynthesis on plant leaf surfaces. Atamna-Ismaeel N; Finkel O; Glaser F; von Mering C; Vorholt JA; Koblížek M; Belkin S; Béjà O Environ Microbiol Rep; 2012 Apr; 4(2):209-16. PubMed ID: 23757275 [TBL] [Abstract][Full Text] [Related]
69. Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. Sasikala C; Ramana CV Adv Appl Microbiol; 1995; 41():227-78. PubMed ID: 7572334 [No Abstract] [Full Text] [Related]
72. Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide. Kushkevych I; Bosáková V; Vítězová M; Rittmann SKR Antioxidants (Basel); 2021 May; 10(6):. PubMed ID: 34067364 [TBL] [Abstract][Full Text] [Related]
77. Should names reflect the evolution of bacterial species? Dellaglio F; Felis GE; Germond JE Int J Syst Evol Microbiol; 2004 Jan; 54(Pt 1):279-281. PubMed ID: 14742494 [TBL] [Abstract][Full Text] [Related]
78. Anoxygenic phototrophic bacteria in meromictic lakes of southern Siberia during the ice period: spatial distributions and ecological conditions. Rogozin DY; Zykov VV; Chernetskii MY; Degermendzhy AG Dokl Biol Sci; 2009; 424():63-7. PubMed ID: 19341088 [No Abstract] [Full Text] [Related]
79. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Eiler A Appl Environ Microbiol; 2006 Dec; 72(12):7431-7. PubMed ID: 17028233 [No Abstract] [Full Text] [Related]
80. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Eimhjellen KE Arch Mikrobiol; 1970; 73(2):193-4. PubMed ID: 5487434 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]