BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19149494)

  • 41. Automated electrophysiology: high throughput of art.
    Wang X; Li M
    Assay Drug Dev Technol; 2003 Oct; 1(5):695-708. PubMed ID: 15090242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High throughput assay technologies for ion channel drug discovery.
    Zheng W; Spencer RH; Kiss L
    Assay Drug Dev Technol; 2004 Oct; 2(5):543-52. PubMed ID: 15671652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High throughput screening assay of alpha(1G) T-type Ca2+ channels and comparison with patch-clamp studies.
    Kim Y; Kang S; Lee JY; Rhim H
    Comb Chem High Throughput Screen; 2009 Mar; 12(3):296-302. PubMed ID: 19275535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated ion channel screening: patch clamping made easy.
    Farre C; Stoelzle S; Haarmann C; George M; Brüggemann A; Fertig N
    Expert Opin Ther Targets; 2007 Apr; 11(4):557-65. PubMed ID: 17373884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of TRP channels by automated patch clamp systems.
    Sunesen M; Jacobsen RB
    Adv Exp Med Biol; 2011; 704():107-23. PubMed ID: 21290291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of new technologies for cellular screening along the drug value chain.
    Möller C; Slack M
    Drug Discov Today; 2010 May; 15(9-10):384-90. PubMed ID: 20206290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Industrializing electrophysiology: HT automated patch clamp on SyncroPatch® 96 using instant frozen cells.
    Polonchuk L
    Methods Mol Biol; 2014; 1183():81-92. PubMed ID: 25023303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High throughput electrophysiology: new perspectives for ion channel drug discovery.
    Willumsen NJ; Bech M; Olesen SP; Jensen BS; Korsgaard MP; Christophersen P
    Recept Channels; 2003; 9(1):3-12. PubMed ID: 12825293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A benchmark study with sealchip planar patch-clamp technology.
    Xu J; Guia A; Rothwarf D; Huang M; Sithiphong K; Ouang J; Tao G; Wang X; Wu L
    Assay Drug Dev Technol; 2003 Oct; 1(5):675-84. PubMed ID: 15090240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated electrophysiology in drug discovery.
    Priest BT; Swensen AM; McManus OB
    Curr Pharm Des; 2007; 13(23):2325-37. PubMed ID: 17692004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated Patch Clamp Meets High-Throughput Screening: 384 Cells Recorded in Parallel on a Planar Patch Clamp Module.
    Obergrussberger A; Brüggemann A; Goetze TA; Rapedius M; Haarmann C; Rinke I; Becker N; Oka T; Ohtsuki A; Stengel T; Vogel M; Steindl J; Mueller M; Stiehler J; George M; Fertig N
    J Lab Autom; 2016 Dec; 21(6):779-793. PubMed ID: 26702021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput ion channel screening: a "patch"-work solution.
    Perkel JM
    Biotechniques; 2010 Jan; 48(1):25-9. PubMed ID: 20095096
    [No Abstract]   [Full Text] [Related]  

  • 53. Characterizing human ion channels in induced pluripotent stem cell-derived neurons.
    Haythornthwaite A; Stoelzle S; Hasler A; Kiss A; Mosbacher J; George M; Brüggemann A; Fertig N
    J Biomol Screen; 2012 Oct; 17(9):1264-72. PubMed ID: 22923790
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex.
    Hernandez CC; Gimenez LE; Cone RD
    Methods Mol Biol; 2024; 2796():229-248. PubMed ID: 38856905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of ASIC1a ligand-gated ion channel drug screening assays across multiple automated patch clamp platforms.
    Ridley J; Manyweathers S; Tang R; Goetze T; Becker N; Rinke-Weiß I; Kirby R; Obergrussberger A; Rogers M
    Front Mol Neurosci; 2022; 15():982689. PubMed ID: 36340694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Turning up the pace of ion channel screening in drug discovery.
    Dunlop J
    Neuropsychopharmacology; 2009 Jan; 34(1):253. PubMed ID: 19079078
    [No Abstract]   [Full Text] [Related]  

  • 57. Characterization of compounds on nicotinic acetylcholine receptor alpha7 channels using higher throughput electrophysiology.
    Friis S; Mathes C; Sunesen M; Bowlby MR; Dunlop J
    J Neurosci Methods; 2009 Feb; 177(1):142-8. PubMed ID: 19000713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening.
    Rogers M; Zidar N; Kikelj D; Kirby RW
    Assay Drug Dev Technol; 2016 Mar; 14(2):109-30. PubMed ID: 26991361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.
    Du Y; Days E; Romaine I; Abney KK; Kaufmann K; Sulikowski G; Stauffer S; Lindsley CW; Weaver CD
    ACS Chem Neurosci; 2015 Jun; 6(6):871-8. PubMed ID: 25879403
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.