BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19149598)

  • 1. Roles of NAD(+) / NADH and NADP(+) / NADPH in cell death.
    Xia W; Wang Z; Wang Q; Han J; Zhao C; Hong Y; Zeng L; Tang L; Ying W
    Curr Pharm Des; 2009; 15(1):12-9. PubMed ID: 19149598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress and NAD+ in ischemic brain injury: current advances and future perspectives.
    Ying W; Xiong ZG
    Curr Med Chem; 2010; 17(20):2152-8. PubMed ID: 20423305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD+ and NADH in cellular functions and cell death.
    Ying W
    Front Biosci; 2006 Sep; 11():3129-48. PubMed ID: 16720381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases.
    Ma Y; Chen H; He X; Nie H; Hong Y; Sheng C; Wang Q; Xia W; Ying W
    Curr Drug Targets; 2012 Feb; 13(2):222-9. PubMed ID: 22204321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD+ and NADH in ischemic brain injury.
    Ying W
    Front Biosci; 2008 Jan; 13():1141-51. PubMed ID: 17981619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiological aspects of cellular pyridine nucleotide metabolism: focus on the vascular endothelium. Review.
    Szabó C
    Acta Physiol Hung; 2003; 90(3):175-93. PubMed ID: 14594189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH can enter into astrocytes and block poly(ADP-ribose) polymerase-1-mediated astrocyte death.
    Zhu K; Swanson RA; Ying W
    Neuroreport; 2005 Aug; 16(11):1209-12. PubMed ID: 16012350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.
    Wang S; Yang X; Lin Y; Qiu X; Li H; Zhao X; Cao L; Liu X; Pang Y; Wang X; Chi Z
    Brain Res; 2013 Oct; 1535():14-23. PubMed ID: 23994215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide.
    Klaidman LK; Mukherjee SK; Adams JD
    Biochim Biophys Acta; 2001 Feb; 1525(1-2):136-48. PubMed ID: 11342263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox imbalance and mitochondrial abnormalities in the diabetic lung.
    Wu J; Jin Z; Yan LJ
    Redox Biol; 2017 Apr; 11():51-59. PubMed ID: 27888691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of NAD-dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivatives of NAD, NADH, NADP, and NADPH.
    Saha A; Colman RF
    Arch Biochem Biophys; 1988 Aug; 264(2):665-77. PubMed ID: 3401017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.
    Martínez I; Zhu J; Lin H; Bennett GN; San KY
    Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cell survival and death by pyridine nucleotides.
    Oka S; Hsu CP; Sadoshima J
    Circ Res; 2012 Aug; 111(5):611-27. PubMed ID: 22904041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphate-stimulated NAD(P)+-dependent glyceraldehyde-3-phosphate dehydrogenase in Bacillus cereus.
    Iddar A; Serrano A; Soukri A
    FEMS Microbiol Lett; 2002 May; 211(1):29-35. PubMed ID: 12052547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture.
    Kim YH; Koh JY
    Exp Neurol; 2002 Oct; 177(2):407-18. PubMed ID: 12429187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.