These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1915015)

  • 21. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural mechanisms of global/local processing of bilateral visual inputs: an ERP study.
    Jiang Y; Han S
    Clin Neurophysiol; 2005 Jun; 116(6):1444-54. PubMed ID: 15978507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity.
    Talsma D; Woldorff MG
    J Cogn Neurosci; 2005 Jul; 17(7):1098-114. PubMed ID: 16102239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attentional load affects automatic emotional processing: evidence from event-related potentials.
    Doallo S; Holguín SR; Cadaveira F
    Neuroreport; 2006 Nov; 17(17):1797-801. PubMed ID: 17164667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid targeting followed by sustained deployment of visual spatial attention.
    Simpson GV; Dale CL; Luks TL; Miller WL; Ritter W; Foxe JJ
    Neuroreport; 2006 Oct; 17(15):1595-9. PubMed ID: 17001275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covert unimanual response preparation triggers attention shifts to effectors rather than goal locations.
    Forster B; Eimer M
    Neurosci Lett; 2007 May; 419(2):142-6. PubMed ID: 17485166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of aging on processes underlying task switching.
    West R; Travers S
    Brain Cogn; 2008 Oct; 68(1):67-80. PubMed ID: 18403080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Movement-related brain potentials in 6- to 7-year-old children].
    Malykh SB; Kuznetsova SB; Sushko IN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(5):904-10. PubMed ID: 1336276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiological correlates of attention-spreading in visual grouping.
    Kasai T; Kondo M
    Neuroreport; 2007 Jan; 18(1):93-8. PubMed ID: 17259868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A brain potential manifestation of error-related processing.
    Gehring WJ; Coles MG; Meyer DE; Donchin E
    Electroencephalogr Clin Neurophysiol Suppl; 1995; 44():261-72. PubMed ID: 7649032
    [No Abstract]   [Full Text] [Related]  

  • 34. Interhemispheric transfer time and structural properties of the corpus callosum.
    Westerhausen R; Kreuder F; Woerner W; Huster RJ; Smit CM; Schweiger E; Wittling W
    Neurosci Lett; 2006 Dec; 409(2):140-5. PubMed ID: 17034948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The N2pc component and stimulus duration.
    Brisson B; Jolicoeur P
    Neuroreport; 2007 Jul; 18(11):1163-6. PubMed ID: 17589319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cognitive control of attention in the human brain: insights from orienting attention to mental representations.
    Lepsien J; Nobre AC
    Brain Res; 2006 Aug; 1105(1):20-31. PubMed ID: 16729979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frontoparietal control of spatial attention and motor intention in human EEG.
    Praamstra P; Boutsen L; Humphreys GW
    J Neurophysiol; 2005 Jul; 94(1):764-74. PubMed ID: 15744008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual load manipulation reveals sensitivity of the face-selective N170 to attention.
    Mohamed TN; Neumann MF; Schweinberger SR
    Neuroreport; 2009 May; 20(8):782-7. PubMed ID: 19369907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The interaction of perception and attention at different stages in individual development].
    Farber DA; Beteleva TG; Dubrovinskaia NV; Savchenko EI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(5):860-71. PubMed ID: 1964329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.