BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19150356)

  • 1. Role of individual domains and identification of internal gap in human guanylate binding protein-1.
    Abdullah N; Srinivasan B; Modiano N; Cresswell P; Sau AK
    J Mol Biol; 2009 Feb; 386(3):690-703. PubMed ID: 19150356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.
    Wehner M; Kunzelmann S; Herrmann C
    FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP.
    Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM
    Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S111N mutation in the helical domain of human Gs(alpha) reduces its GDP/GTP exchange rate.
    Brito M; Guzmán L; Romo X; Soto X; Hinrichs MV; Olate J
    J Cell Biochem; 2002; 85(3):615-20. PubMed ID: 11968001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif.
    Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C
    J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis.
    deLivron MA; Makanji HS; Lane MC; Robinson VL
    Biochemistry; 2009 Nov; 48(44):10533-41. PubMed ID: 19803466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide binding and self-stimulated GTPase activity of human guanylate-binding protein 1 (hGBP1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    Methods Enzymol; 2005; 404():512-27. PubMed ID: 16413296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.
    Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A
    Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the lower GMP formation in large GTPase hGBP-2 and role of its individual domains in regulation of GTP hydrolysis.
    Rajan S; Pandita E; Mittal M; Sau AK
    FEBS J; 2019 Oct; 286(20):4103-4121. PubMed ID: 31199074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the ribosome associating GTPase HflX.
    Wu H; Sun L; Blombach F; Brouns SJ; Snijders AP; Lorenzen K; van den Heuvel RH; Heck AJ; Fu S; Li X; Zhang XC; Rao Z; van der Oost J
    Proteins; 2010 Feb; 78(3):705-13. PubMed ID: 19787775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain.
    Winger JA; Marletta MA
    Biochemistry; 2005 Mar; 44(10):4083-90. PubMed ID: 15751985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time in vitro measurement of intrinsic and Ras GAP-mediated GTP hydrolysis.
    Shutes A; Der CJ
    Methods Enzymol; 2006; 407():9-22. PubMed ID: 16757310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional study on GTP hydrolysis by the GTP-binding protein from Sulfolobus solfataricus, a member of the HflX family.
    Huang B; Wu H; Hao N; Blombach F; van der Oost J; Li X; Zhang XC; Rao Z
    J Biochem; 2010 Jul; 148(1):103-13. PubMed ID: 20400571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is the role of the helical domain of Gsalpha in the GTPase reaction?
    Shnerb T; Lin N; Shurki A
    Biochemistry; 2007 Sep; 46(38):10875-85. PubMed ID: 17727271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L.
    Rao MR; Kumari G; Balasundaram D; Sankaranarayanan R; Mahalingam S
    J Mol Biol; 2006 Dec; 364(4):637-54. PubMed ID: 17034816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain.
    Ince S; Zhang P; Kutsch M; Krenczyk O; Shydlovskyi S; Herrmann C
    FEBS J; 2021 Jan; 288(2):582-599. PubMed ID: 32352209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.