BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19150487)

  • 1. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections.
    Sillitoe RV; Gopal N; Joyner AL
    Neuroscience; 2009 Sep; 162(3):574-88. PubMed ID: 19150487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum.
    Sillitoe RV; Stephen D; Lao Z; Joyner AL
    J Neurosci; 2008 Nov; 28(47):12150-62. PubMed ID: 19020009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene.
    Nunzi MG; Grillo M; Margolis FL; Mugnaini E
    J Comp Neurol; 1999 Feb; 404(1):97-113. PubMed ID: 9886028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From clusters to stripes: the developmental origins of adult cerebellar compartmentation.
    Larouche M; Hawkes R
    Cerebellum; 2006; 5(2):77-88. PubMed ID: 16818382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen.
    Marzban H; Kim CT; Doorn D; Chung SH; Hawkes R
    Neuroscience; 2008 Jun; 153(4):1190-201. PubMed ID: 18455884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum.
    Miyata T; Ono Y; Okamoto M; Masaoka M; Sakakibara A; Kawaguchi A; Hashimoto M; Ogawa M
    Neural Dev; 2010 Sep; 5():23. PubMed ID: 20809939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum.
    Furutama D; Morita N; Takano R; Sekine Y; Sadakata T; Shinoda Y; Hayashi K; Mishima Y; Mikoshiba K; Hawkes R; Furuichi T
    J Neurosci Res; 2010 Oct; 88(13):2810-25. PubMed ID: 20632399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types.
    Wilson SL; Kalinovsky A; Orvis GD; Joyner AL
    Cerebellum; 2011 Sep; 10(3):356-72. PubMed ID: 21431469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned expression of a cocaine- and amphetamine-regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex.
    Reeber SL; Sillitoe RV
    J Comp Neurol; 2011 Jun; 519(9):1781-96. PubMed ID: 21452228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum.
    Demilly A; Reeber SL; Gebre SA; Sillitoe RV
    Cerebellum; 2011 Sep; 10(3):409-21. PubMed ID: 20127431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common Origin of the Cerebellar Dual Somatotopic Areas Revealed by Tracking Embryonic Purkinje Cell Clusters with Birthdate Tagging.
    Tran-Anh K; Zhang J; Nguyen-Minh VT; Fujita H; Hirata T; Sugihara I
    eNeuro; 2020; 7(6):. PubMed ID: 33055198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map.
    Sillitoe RV; Vogel MW; Joyner AL
    J Neurosci; 2010 Jul; 30(30):10015-24. PubMed ID: 20668186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascl1 genetics reveals insights into cerebellum local circuit assembly.
    Sudarov A; Turnbull RK; Kim EJ; Lebel-Potter M; Guillemot F; Joyner AL
    J Neurosci; 2011 Jul; 31(30):11055-69. PubMed ID: 21795554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.
    Obana EA; Lundell TG; Yi KJ; Radomski KL; Zhou Q; Doughty ML
    Cerebellum; 2015 Jun; 14(3):247-63. PubMed ID: 25592069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peri- and postnatal development of cerebellar compartments in the mouse.
    Sugihara I; Fujita H
    Cerebellum; 2013 Jun; 12(3):325-7. PubMed ID: 23335119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ric-8a, a guanine nucleotide exchange factor for heterotrimeric G proteins, regulates bergmann glia-basement membrane adhesion during cerebellar foliation.
    Ma S; Kwon HJ; Huang Z
    J Neurosci; 2012 Oct; 32(43):14979-93. PubMed ID: 23100420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striped Distribution Pattern of Purkinje Cells of Different Birthdates in the Mouse Cerebellar Cortex Studied with the Neurog2-CreER Transgenic Line.
    Zhang J; Tran-Anh K; Hirata T; Sugihara I
    Neuroscience; 2021 May; 462():122-140. PubMed ID: 32717297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar zonal patterning relies on Purkinje cell neurotransmission.
    White JJ; Arancillo M; Stay TL; George-Jones NA; Levy SL; Heck DH; Sillitoe RV
    J Neurosci; 2014 Jun; 34(24):8231-45. PubMed ID: 24920627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum.
    Sugihara I; Fujita H; Na J; Quy PN; Li BY; Ikeda D
    J Comp Neurol; 2009 Jan; 512(2):282-304. PubMed ID: 19003905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.