BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19150503)

  • 1. Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination.
    Händel B; Haarmeier T
    Neuroimage; 2009 Apr; 45(3):1040-6. PubMed ID: 19150503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromagnetic correlates of developmental changes in endogenous high-frequency brain oscillations in children: a wavelet-based beamformer study.
    Xiang J; Liu Y; Wang Y; Kotecha R; Kirtman EG; Chen Y; Huo X; Fujiwara H; Hemasilpin N; DeGrauw T; Rose D
    Brain Res; 2009 Jun; 1274():28-39. PubMed ID: 19362072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion.
    Amano K; Kimura T; Nishida S; Takeda T; Gomi H
    J Neurophysiol; 2009 Feb; 101(2):888-97. PubMed ID: 19073805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli.
    Swettenham JB; Muthukumaraswamy SD; Singh KD
    J Neurophysiol; 2009 Aug; 102(2):1241-53. PubMed ID: 19515947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency activity in human visual cortex is modulated by visual motion strength.
    Siegel M; Donner TH; Oostenveld R; Fries P; Engel AK
    Cereb Cortex; 2007 Mar; 17(3):732-41. PubMed ID: 16648451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population activity in the human dorsal pathway predicts the accuracy of visual motion detection.
    Donner TH; Siegel M; Oostenveld R; Fries P; Bauer M; Engel AK
    J Neurophysiol; 2007 Jul; 98(1):345-59. PubMed ID: 17493916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals.
    Vidal JR; Chaumon M; O'Regan JK; Tallon-Baudry C
    J Cogn Neurosci; 2006 Nov; 18(11):1850-62. PubMed ID: 17069476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of synchronized induced Gamma-Band responses during a simple object recognition task: a replication study in human MEG.
    Gruber T; Maess B; Trujillo-Barreto NJ; Müller MM
    Brain Res; 2008 Feb; 1196():74-84. PubMed ID: 18234156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional localization of current sources in the human brain associated with the discrimination of moving visual stimuli.
    Weinberg H; Robertson A; Brickett P; Cheyne D; Harrop R; Dykstra C; Baff M
    Electroencephalogr Clin Neurophysiol Suppl; 1987; 40():499-506. PubMed ID: 3480170
    [No Abstract]   [Full Text] [Related]  

  • 10. Gamma oscillations underlying the visual motion aftereffect.
    Tikhonov A; Händel B; Haarmeier T; Lutzenberger W; Thier P
    Neuroimage; 2007 Dec; 38(4):708-19. PubMed ID: 17900931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective attention increases the dependency of cortical responses on visual motion coherence in man.
    Händel B; Lutzenberger W; Thier P; Haarmeier T
    Cereb Cortex; 2008 Dec; 18(12):2902-8. PubMed ID: 18424779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG.
    Maris E; van Vugt M; Kahana M
    Neuroimage; 2011 Jan; 54(2):836-50. PubMed ID: 20851192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEG responses correlated with the visual perception of velocity change.
    Amano K; Nishida S; Takeda T
    Vision Res; 2006 Feb; 46(3):336-45. PubMed ID: 16005042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoencephalography: in search of neural processes for visual motion information.
    Kaneoke Y
    Prog Neurobiol; 2006 Dec; 80(5):219-40. PubMed ID: 17113701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task- and performance-related modulation of domain-specific auditory short-term memory representations in the gamma-band.
    Kaiser J; Lutzenberger W; Decker C; Wibral M; Rahm B
    Neuroimage; 2009 Jul; 46(4):1127-36. PubMed ID: 19289171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous MEG and intracranial EEG recordings during attentive reading.
    Dalal SS; Baillet S; Adam C; Ducorps A; Schwartz D; Jerbi K; Bertrand O; Garnero L; Martinerie J; Lachaux JP
    Neuroimage; 2009 May; 45(4):1289-304. PubMed ID: 19349241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theta oscillation during auditory change detection: An MEG study.
    Hsiao FJ; Wu ZA; Ho LT; Lin YY
    Biol Psychol; 2009 Apr; 81(1):58-66. PubMed ID: 19428969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impulsivity, anxiety, and individual differences in evoked and induced brain oscillations.
    Knyazev GG; Levin EA; Savostyanov AN
    Int J Psychophysiol; 2008 Jun; 68(3):242-54. PubMed ID: 18396343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding brain oscillations with power dependencies in neuroimaging data.
    Dähne S; Nikulin VV; Ramírez D; Schreier PJ; Müller KR; Haufe S
    Neuroimage; 2014 Aug; 96():334-48. PubMed ID: 24721331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical oscillatory activity associated with the perception of illusory and real visual contours.
    Kinsey K; Anderson SJ; Hadjipapas A; Nevado A; Hillebrand A; Holliday IE
    Int J Psychophysiol; 2009 Sep; 73(3):265-72. PubMed ID: 19397939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.