These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19150761)

  • 1. Robust adaptive control of cooperating mobile manipulators with relative motion.
    Li Z; Tao PY; Ge SS; Adams M; Wijesoma WS
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):103-16. PubMed ID: 19150761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators.
    Li Z; Ge SS; Ming A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):607-16. PubMed ID: 17550115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme.
    Ibeas A; de la Sen M
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1162-79. PubMed ID: 17036821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach.
    Peng J; Yang Z; Wang Y; Zhang F; Liu Y
    ISA Trans; 2019 Sep; 92():166-179. PubMed ID: 30837125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):142-55. PubMed ID: 19150764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.
    Han SI; Lee JM
    ISA Trans; 2014 Jan; 53(1):33-43. PubMed ID: 24055100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive fuzzy decentralized control for large-scale nonlinear systems with time-varying delays and unknown high-frequency gain sign.
    Tong S; Liu C; Li Y; Zhang H
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):474-85. PubMed ID: 20716504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new performance index for the repetitive motion of mobile manipulators.
    Xiao L; Zhang Y
    IEEE Trans Cybern; 2014 Feb; 44(2):280-92. PubMed ID: 23757549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.
    Moreno-Valenzuela J; Aguilar-Avelar C; Puga-Guzman SA; Santibanez V
    IEEE Trans Cybern; 2016 Dec; 46(12):3439-3452. PubMed ID: 28113230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity.
    Liu Z; Lai G; Zhang Y; Chen CL
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1789-802. PubMed ID: 25915964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flocking of multiple mobile robots based on backstepping.
    Dong W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1108-19. PubMed ID: 16366238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.