These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 19150986)
1. Identifying and characterizing a functional HIV-1 reverse transcriptase-binding site on integrase. Wilkinson TA; Januszyk K; Phillips ML; Tekeste SS; Zhang M; Miller JT; Le Grice SF; Clubb RT; Chow SA J Biol Chem; 2009 Mar; 284(12):7931-9. PubMed ID: 19150986 [TBL] [Abstract][Full Text] [Related]
2. Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. Tekeste SS; Wilkinson TA; Weiner EM; Xu X; Miller JT; Le Grice SF; Clubb RT; Chow SA J Virol; 2015 Dec; 89(23):12058-69. PubMed ID: 26401032 [TBL] [Abstract][Full Text] [Related]
3. Identification of residues in the C-terminal domain of HIV-1 integrase that mediate binding to the transportin-SR2 protein. De Houwer S; Demeulemeester J; Thys W; Taltynov O; Zmajkovicova K; Christ F; Debyser Z J Biol Chem; 2012 Oct; 287(41):34059-68. PubMed ID: 22872638 [TBL] [Abstract][Full Text] [Related]
4. Vulnerable targets in HIV-1 Pol for attenuation-based vaccine design. Ojwach DBA; Madlala P; Gordon M; Ndung'u T; Mann JK Virology; 2021 Feb; 554():1-8. PubMed ID: 33316731 [TBL] [Abstract][Full Text] [Related]
5. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase. Takahata T; Takeda E; Tobiume M; Tokunaga K; Yokoyama M; Huang YL; Hasegawa A; Shioda T; Sato H; Kannagi M; Masuda T J Virol; 2017 Jan; 91(1):. PubMed ID: 27795445 [TBL] [Abstract][Full Text] [Related]
6. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. Zhu K; Dobard C; Chow SA J Virol; 2004 May; 78(10):5045-55. PubMed ID: 15113886 [TBL] [Abstract][Full Text] [Related]
7. HIV-1 reverse transcriptase and integrase enzymes physically interact and inhibit each other. Tasara T; Maga G; Hottiger MO; Hübscher U FEBS Lett; 2001 Oct; 507(1):39-44. PubMed ID: 11682056 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. Dobard CW; Briones MS; Chow SA J Virol; 2007 Sep; 81(18):10037-46. PubMed ID: 17626089 [TBL] [Abstract][Full Text] [Related]
9. Biochemical interactions between HIV-1 integrase and reverse transcriptase. Chakraborty A; Sun GQ; Mustavich L; Huang SH; Li BL FEBS Lett; 2013 Mar; 587(5):425-9. PubMed ID: 23270839 [TBL] [Abstract][Full Text] [Related]
10. AKAP149 binds to HIV-1 reverse transcriptase and is involved in the reverse transcription. Lemay J; Maidou-Peindara P; Cancio R; Ennifar E; Coadou G; Maga G; Rain JC; Benarous R; Liu LX J Mol Biol; 2008 Nov; 383(4):783-96. PubMed ID: 18786546 [TBL] [Abstract][Full Text] [Related]
11. Effect on HIV-1 viral replication capacity of DTG-resistance mutations in NRTI/NNRTI resistant viruses. Pham HT; Mesplède T; Wainberg MA Retrovirology; 2016 Apr; 13(1):31. PubMed ID: 27130466 [TBL] [Abstract][Full Text] [Related]
12. Subtype-associated differences in HIV-1 reverse transcription affect the viral replication. Iordanskiy S; Waltke M; Feng Y; Wood C Retrovirology; 2010 Oct; 7():85. PubMed ID: 20939905 [TBL] [Abstract][Full Text] [Related]
13. The HIV-1 integrase mutant R263A/K264A is 2-fold defective for TRN-SR2 binding and viral nuclear import. De Houwer S; Demeulemeester J; Thys W; Rocha S; Dirix L; Gijsbers R; Christ F; Debyser Z J Biol Chem; 2014 Sep; 289(36):25351-61. PubMed ID: 25063804 [TBL] [Abstract][Full Text] [Related]
14. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome. van Bel N; van der Velden Y; Bonnard D; Le Rouzic E; Das AT; Benarous R; Berkhout B PLoS One; 2014; 9(7):e103552. PubMed ID: 25072705 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase. Dar MJ; Monel B; Krishnan L; Shun MC; Di Nunzio F; Helland DE; Engelman A Retrovirology; 2009 Oct; 6():94. PubMed ID: 19840380 [TBL] [Abstract][Full Text] [Related]
16. Specific Interaction between eEF1A and HIV RT Is Critical for HIV-1 Reverse Transcription and a Potential Anti-HIV Target. Li D; Wei T; Rawle DJ; Qin F; Wang R; Soares DC; Jin H; Sivakumaran H; Lin MH; Spann K; Abbott CM; Harrich D PLoS Pathog; 2015 Dec; 11(12):e1005289. PubMed ID: 26624286 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). Gleenberg IO; Herschhorn A; Hizi A J Mol Biol; 2007 Jun; 369(5):1230-43. PubMed ID: 17490682 [TBL] [Abstract][Full Text] [Related]
18. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication. Xu Z; Zheng Y; Ao Z; Clement M; Mouland AJ; Kalpana GV; Belhumeur P; Cohen EA; Yao X Retrovirology; 2008 Nov; 5():102. PubMed ID: 19014595 [TBL] [Abstract][Full Text] [Related]
19. Replication of chimeric human immunodeficiency virus type 1 (HIV-1) containing HIV-2 integrase (IN): naturally selected mutations in IN augment DNA synthesis. Padow M; Lai L; Deivanayagam C; DeLucas LJ; Weiss RB; Dunn DM; Wu X; Kappes JC J Virol; 2003 Oct; 77(20):11050-9. PubMed ID: 14512553 [TBL] [Abstract][Full Text] [Related]
20. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. Zamborlini A; Coiffic A; Beauclair G; Delelis O; Paris J; Koh Y; Magne F; Giron ML; Tobaly-Tapiero J; Deprez E; Emiliani S; Engelman A; de Thé H; Saïb A J Biol Chem; 2011 Jun; 286(23):21013-22. PubMed ID: 21454548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]