These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19151139)

  • 21. Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus.
    Simunovic V; Gherardini FC; Shimkets LJ
    J Bacteriol; 2003 Sep; 185(17):5066-75. PubMed ID: 12923079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Mechanisms of Signaling in Myxococcus xanthus Development.
    Bretl DJ; Kirby JR
    J Mol Biol; 2016 Sep; 428(19):3805-30. PubMed ID: 27430596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics and living patterns of marine myxobacterial isolates.
    Zhang YQ; Li YZ; Wang B; Wu ZH; Zhang CY; Gong X; Qiu ZJ; Zhang Y
    Appl Environ Microbiol; 2005 Jun; 71(6):3331-6. PubMed ID: 15933036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus.
    Robinson M; Son B; Kroos D; Kroos L
    BMC Genomics; 2014 Dec; 15():1123. PubMed ID: 25515642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus.
    Sun H; Shi W
    J Bacteriol; 2001 Aug; 183(16):4786-95. PubMed ID: 11466282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive Response of Developing Myxococcus xanthus to the Addition of Nutrient Medium Correlates with the Level of MrpC.
    Hoang Y; Kroos L
    J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30181127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus.
    Shi X; Wegener-Feldbrügge S; Huntley S; Hamann N; Hedderich R; Søgaard-Andersen L
    J Bacteriol; 2008 Jan; 190(2):613-24. PubMed ID: 17993514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Oct; 34(2):268-81. PubMed ID: 10564471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility.
    Vlamakis HC; Kirby JR; Zusman DR
    Mol Microbiol; 2004 Jun; 52(6):1799-811. PubMed ID: 15186426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development.
    Ossa F; Diodati ME; Caberoy NB; Giglio KM; Edmonds M; Singer M; Garza AG
    J Bacteriol; 2007 Dec; 189(23):8474-83. PubMed ID: 17905995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility.
    Yang Z; Geng Y; Xu D; Kaplan HB; Shi W
    Mol Microbiol; 1998 Dec; 30(5):1123-30. PubMed ID: 9988486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress.
    Kimura Y; Mishima Y; Nakano H; Takegawa K
    J Bacteriol; 2002 Jul; 184(13):3578-85. PubMed ID: 12057952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.
    Sarwar Z; Garza AG
    J Bacteriol; 2016 Feb; 198(3):377-85. PubMed ID: 26369581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis.
    Bellenger K; Ma X; Shi W; Yang Z
    J Bacteriol; 2002 Oct; 184(20):5654-60. PubMed ID: 12270823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Within-species variation in OMV cargo proteins: the Myxococcus xanthus OMV pan-proteome.
    Zwarycz AS; Livingstone PG; Whitworth DE
    Mol Omics; 2020 Aug; 16(4):387-397. PubMed ID: 32373862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development.
    Ueki T; Inouye S
    J Biol Chem; 2005 Sep; 280(37):32279-84. PubMed ID: 16040607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus.
    Nielsen M; Rasmussen AA; Ellehauge E; Treuner-Lange A; Søgaard-Andersen L
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2171-2183. PubMed ID: 15256560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.