These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19151185)
21. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818 [TBL] [Abstract][Full Text] [Related]
22. The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Rivardo F; Martinotti MG; Turner RJ; Ceri H Can J Microbiol; 2010 Mar; 56(3):272-8. PubMed ID: 20453915 [TBL] [Abstract][Full Text] [Related]
23. Antimicrobial dendrimer active against Escherichia coli biofilms. Hou S; Zhou C; Liu Z; Young AW; Shi Z; Ren D; Kallenbach NR Bioorg Med Chem Lett; 2009 Sep; 19(18):5478-81. PubMed ID: 19682902 [TBL] [Abstract][Full Text] [Related]
24. Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates. Neihaya HZ; Zaman HH Microb Pathog; 2018 Mar; 116():200-208. PubMed ID: 29414608 [TBL] [Abstract][Full Text] [Related]
25. Revealing the Significance of the Glycan Binding Property of Bala Subramaniyan S; Senthilnathan R; Arunachalam J; Anbazhagan V Bioconjug Chem; 2020 Jan; 31(1):139-148. PubMed ID: 31860279 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems. Budeli P; Moropeng RC; Mpenyana-Monyatsi L; Momba MNB PLoS One; 2018; 13(4):e0194715. PubMed ID: 29621296 [TBL] [Abstract][Full Text] [Related]
27. In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. Vilarrasa J; Delgado LM; Galofré M; Àlvarez G; Violant D; Manero JM; Blanc V; Gil FJ; Nart J J Mater Sci Mater Med; 2018 Nov; 29(11):164. PubMed ID: 30392142 [TBL] [Abstract][Full Text] [Related]
28. Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms. Harrison JJ; Ceri H; Badry EA; Roper NJ; Tomlin KL; Turner RJ Can J Microbiol; 2005 Aug; 51(8):671-83. PubMed ID: 16234865 [TBL] [Abstract][Full Text] [Related]
29. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. Lencova S; Svarcova V; Stiborova H; Demnerova K; Jencova V; Hozdova K; Zdenkova K ACS Appl Mater Interfaces; 2021 Jan; 13(2):2277-2288. PubMed ID: 33284019 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis, biofilm disruption properties and biocompatibility study of a poly-cationic peptide functionalized graphene-silver nanocomposite. Parandhaman T; Das SK Biomater Sci; 2018 Nov; 6(12):3356-3372. PubMed ID: 30357139 [TBL] [Abstract][Full Text] [Related]
31. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. Khalid HF; Tehseen B; Sarwar Y; Hussain SZ; Khan WS; Raza ZA; Bajwa SZ; Kanaras AG; Hussain I; Rehman A J Hazard Mater; 2019 Feb; 364():441-448. PubMed ID: 30384254 [TBL] [Abstract][Full Text] [Related]
32. Silver nanoparticles exert concentration-dependent influences on biofilm development and architecture. Guo J; Qin S; Wei Y; Liu S; Peng H; Li Q; Luo L; Lv M Cell Prolif; 2019 Jul; 52(4):e12616. PubMed ID: 31050052 [TBL] [Abstract][Full Text] [Related]
33. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. Bang J; Hong A; Kim H; Beuchat LR; Rhee MS; Kim Y; Ryu JH Int J Food Microbiol; 2014 Nov; 191():129-34. PubMed ID: 25261831 [TBL] [Abstract][Full Text] [Related]
34. In vitro evaluation of the impact of silver coating on Escherichia coli adherence to urinary catheters. Ogilvie AT; Brisson BA; Singh A; Weese JS Can Vet J; 2015 May; 56(5):490-4. PubMed ID: 25969583 [TBL] [Abstract][Full Text] [Related]
35. Silver-enhanced block copolymer membranes with biocidal activity. Madhavan P; Hong PY; Sougrat R; Nunes SP ACS Appl Mater Interfaces; 2014; 6(21):18497-501. PubMed ID: 25286186 [TBL] [Abstract][Full Text] [Related]
36. Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Inbakandan D; Kumar C; Abraham LS; Kirubagaran R; Venkatesan R; Khan SA Colloids Surf B Biointerfaces; 2013 Nov; 111():636-43. PubMed ID: 23907051 [TBL] [Abstract][Full Text] [Related]
37. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Picoli T; Peter CM; Zani JL; Waller SB; Lopes MG; Boesche KN; Vargas GDÁ; Hübner SO; Fischer G Microb Pathog; 2017 Nov; 112():57-62. PubMed ID: 28943153 [TBL] [Abstract][Full Text] [Related]
38. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Kim J; Pitts B; Stewart PS; Camper A; Yoon J Antimicrob Agents Chemother; 2008 Apr; 52(4):1446-53. PubMed ID: 18195062 [TBL] [Abstract][Full Text] [Related]
39. Polyethylene/silver-nanofiber composites: A material for antibacterial films. Zapata PA; Larrea M; Tamayo L; Rabagliati FM; Azócar MI; Páez M Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1282-9. PubMed ID: 27612828 [TBL] [Abstract][Full Text] [Related]