These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19151211)

  • 1. Too much of a good thing: how insects cope with excess ions or toxins in the diet.
    O'Donnell MJ
    J Exp Biol; 2009 Feb; 212(Pt 3):363-72. PubMed ID: 19151211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrine control of ionic homeostasis in blood-sucking insects.
    Coast GM
    J Exp Biol; 2009 Feb; 212(Pt 3):378-86. PubMed ID: 19151213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transepithelial transport of salicylate by the Malpighian tubules of insects from different orders.
    Ruiz-Sanchez E; Van Walderveen MC; Livingston A; O'Donnell MJ
    J Insect Physiol; 2007 Oct; 53(10):1034-45. PubMed ID: 17640663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-selective microelectrode analysis of salicylate transport by the Malpighian tubules and gut of Drosophila melanogaster.
    O'Donnell MJ; Rheault MR
    J Exp Biol; 2005 Jan; 208(Pt 1):93-104. PubMed ID: 15601881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acute or chronic exposure to dietary organic anions on secretion of methotrexate and salicylate by Malpighian tubules of Drosophila melanogaster larvae.
    Chahine S; O'Donnell MJ
    Arch Insect Biochem Physiol; 2010 Mar; 73(3):128-47. PubMed ID: 20077573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excretion in insects: function of gut and rectum in concentrating and diluting the urine.
    Phillips JE
    Fed Proc; 1977 Oct; 36(11):2480-6. PubMed ID: 20337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antidiuretic neurohormone RhoprCAPA-2 downregulates fluid transport across the anterior midgut in the blood-feeding insect Rhodnius prolixus.
    Ianowski JP; Paluzzi JP; Te Brugge VA; Orchard I
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R548-57. PubMed ID: 20007522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endocrine control of salt balance in insects.
    Coast G
    Gen Comp Endocrinol; 2007; 152(2-3):332-8. PubMed ID: 17400222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignoids in insects: chemical probes for the study of ecdysis, excretion and Trypanosoma cruzi-triatomine interactions.
    Garcia ES; Azambuja P
    Toxicon; 2004 Sep; 44(4):431-40. PubMed ID: 15302525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal control of renal functions in insects.
    Phillips JE
    Fed Proc; 1982 Jun; 41(8):2348-54. PubMed ID: 6282650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transepithelial transport of fluorescent p-glycoprotein and MRP2 substrates by insect Malpighian tubules: confocal microscopic analysis of secreted fluid droplets.
    Leader JP; O'Donnell MJ
    J Exp Biol; 2005 Dec; 208(Pt 23):4363-76. PubMed ID: 16339857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-diuretic factors in insects: the role of CAPA peptides.
    Paluzzi JP
    Gen Comp Endocrinol; 2012 May; 176(3):300-8. PubMed ID: 22226757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodnius prolixus Malpighian tubules and control of diuresis by neurohormones.
    Martini SV; Nascimento SB; Morales MM
    An Acad Bras Cienc; 2007 Mar; 79(1):87-95. PubMed ID: 17401478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary or injected organic cations on larval Drosophila melanogaster: mortality and elimination of tetraethylammonium from the hemolymph.
    Bijelic G; Kim NR; O'Donnell MJ
    Arch Insect Biochem Physiol; 2005 Oct; 60(2):93-103. PubMed ID: 16175537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease.
    Gautam NK; Verma P; Tapadia MG
    Results Probl Cell Differ; 2017; 60():3-25. PubMed ID: 28409340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of the fluorescein transport process in Malpighian tubules of the cricket Acheta domesticus.
    Neufeld DS; Kauffman R; Kurtz Z
    J Exp Biol; 2005 Jun; 208(Pt 12):2227-36. PubMed ID: 15939766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chronic exposure to dietary salicylate on elimination and renal excretion of salicylate by Drosophila melanogaster larvae.
    Ruiz-Sanchez E; O'Donnell MJ
    J Exp Biol; 2007 Jul; 210(Pt 14):2464-71. PubMed ID: 17601950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence and activity of a Dippu-DH31-like peptide in the blood-feeding bug, Rhodnius prolixus.
    Te Brugge VA; Lombardi VC; Schooley DA; Orchard I
    Peptides; 2005 Jan; 26(1):29-42. PubMed ID: 15626502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraethylammonium and nicotine transport by the Malpighian tubules of insects.
    Rheault MR; Plaumann JS; O'Donnell MJ
    J Insect Physiol; 2006 May; 52(5):487-98. PubMed ID: 16527303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fate of calcium in the diet of Rhodnius prolixus: storage in concretion bodies in the Malpighian tubules.
    Maddrell SH; Whittembury G; Mooney RL; Harrison JB; Overton JA; Rodriguez B
    J Exp Biol; 1991 May; 157():483-502. PubMed ID: 2061707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.