These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 19151439)
1. Assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (Sesbania exaltata Raf.). Miller G; Begonia G; Begonia M; Ntoni J; Hundley O Int J Environ Res Public Health; 2008 Dec; 5(5):428-35. PubMed ID: 19151439 [TBL] [Abstract][Full Text] [Related]
2. Bioavailability and uptake of lead by coffeeweed (Sesbania exaltata Raf.). Miller G; Begonia G; Begonia M; Ntoni J Int J Environ Res Public Health; 2008 Dec; 5(5):436-40. PubMed ID: 19151440 [TBL] [Abstract][Full Text] [Related]
3. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Begonia MT; Begonia GB; Ighoavodha M; Gilliard D Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822 [TBL] [Abstract][Full Text] [Related]
4. Chelate-enhanced phytoextraction of lead-contaminated soils using coffeeweed (Sesbania exaltata Raf.). Begonia GB; Miller GS; Begonia MF; Burks C Bull Environ Contam Toxicol; 2002 Nov; 69(5):624-31. PubMed ID: 12375108 [No Abstract] [Full Text] [Related]
5. Selected morphological characteristics, lead uptake and phytochelatin synthesis by coffeeweed (Sesbania exaltata Raf.) grown in elevated levels of lead-contaminated soil. Miller G; Begonia G; Begonia MF Int J Environ Res Public Health; 2011 Jun; 8(6):2401-17. PubMed ID: 21776237 [TBL] [Abstract][Full Text] [Related]
6. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Ruley AT; Sharma NC; Sahi SV; Singh SR; Sajwan KS Environ Pollut; 2006 Nov; 144(1):11-8. PubMed ID: 16522347 [TBL] [Abstract][Full Text] [Related]
7. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Suthar V; Memon KS; Mahmood-ul-Hassan M Environ Monit Assess; 2014 Jun; 186(6):3957-68. PubMed ID: 24515546 [TBL] [Abstract][Full Text] [Related]
8. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents. Lou LQ; Ye ZH; Wong MH Int J Phytoremediation; 2007; 9(4):325-43. PubMed ID: 18246709 [TBL] [Abstract][Full Text] [Related]
9. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Israr M; Sahi SV Environ Pollut; 2008 May; 153(1):29-36. PubMed ID: 18272272 [TBL] [Abstract][Full Text] [Related]
10. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230 [TBL] [Abstract][Full Text] [Related]
11. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
13. Lead phytoextraction from contaminated soil with high-biomass plant species. Shen ZG; Li XD; Wang CC; Chen HM; Chua H J Environ Qual; 2002; 31(6):1893-900. PubMed ID: 12469839 [TBL] [Abstract][Full Text] [Related]
14. Effects of chelates (EDTA, EDDS, NTA) on phytoavailability of heavy metals (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.). Hai NNS; Sanderson P; Qi F; Du J; Nong NN; Bolan N; Naidu R Environ Sci Pollut Res Int; 2022 Jun; 29(28):42102-42116. PubMed ID: 35366209 [TBL] [Abstract][Full Text] [Related]
16. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
17. EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Zaier H; Ghnaya T; Ghabriche R; Chmingui W; Lakhdar A; Lutts S; Abdelly C Environ Sci Pollut Res Int; 2014 Jun; 21(12):7607-15. PubMed ID: 24604274 [TBL] [Abstract][Full Text] [Related]
18. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
19. Tartaric acid soil-amendment increases phytoextraction potential through root to shoot transfer of lead in turnip. Khan I; Iqbal M; Raza SH; Anwar S; Ashraf M; Shafiq F Chemosphere; 2022 Jun; 296():134055. PubMed ID: 35196532 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.). Paz-Alberto AM; Sigua GC; Baui BG; Prudente JA Environ Sci Pollut Res Int; 2007 Nov; 14(7):498-504. PubMed ID: 18062482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]