These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19151833)

  • 1. Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod.
    Chau YF; Chen MW; Tsai DP
    Appl Opt; 2009 Jan; 48(3):617-22. PubMed ID: 19151833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers.
    Kumar J; Wei X; Barrow S; Funston AM; Thomas KG; Mulvaney P
    Phys Chem Chem Phys; 2013 Mar; 15(12):4258-64. PubMed ID: 23439989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial characteristics of optical fields near a gold nanorod revealed by three-dimensional scanning near-field optical microscopy.
    Suzuki H; Imaeda K; Mizobata H; Imura K
    J Chem Phys; 2020 Jan; 152(1):014708. PubMed ID: 31914735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Overlapped Plasmon Modes in a Gold Hexagonal Plate Revealed by Three-Dimensional Near-Field Optical Microscopy.
    Matsuura T; Imaeda K; Hasegawa S; Suzuki H; Imura K
    J Phys Chem Lett; 2019 Feb; 10(4):819-824. PubMed ID: 30735394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanorod arrays as plasmonic cavity resonators.
    Lyvers DP; Moon JM; Kildishev AV; Shalaev VM; Wei A
    ACS Nano; 2008 Dec; 2(12):2569-76. PubMed ID: 19206293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization Based on the Surface Plasmon Optical Properties of Adjustable Metal Nano-Microcavity System for Biosensing.
    Zhu J; Yang Y; Yin Y; Yuan H
    Front Chem; 2021; 9():762638. PubMed ID: 34722464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of Plasmon Wave Packet Motions via Femtosecond Time-Resolved Near-Field Imaging Techniques.
    Nishiyama Y; Imura K; Okamoto H
    Nano Lett; 2015 Nov; 15(11):7657-65. PubMed ID: 26479085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-field imaging of surface-plasmon vortex-modes around a single elliptical nanohole in a gold film.
    Triolo C; Savasta S; Settineri A; Trusso S; Saija R; Agarwal NR; Patanè S
    Sci Rep; 2019 Mar; 9(1):5320. PubMed ID: 30926866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes.
    Imura K; Nagahara T; Okamoto H
    J Phys Chem B; 2005 Jul; 109(27):13214-20. PubMed ID: 16852648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic optical properties of a single gold nano-rod.
    Huang HJ; Yu CP; Chang HC; Chiu KP; Ming Chen H; Liu RS; Tsai DP
    Opt Express; 2007 Jun; 15(12):7132-9. PubMed ID: 19547031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-insulator-metal nanorod arrays for subwavelength imaging.
    Wu X; Zhang J; Gong Q
    Opt Express; 2009 Feb; 17(4):2818-25. PubMed ID: 19219186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films.
    Wang D; Hore MJ; Ye X; Zheng C; Murray CB; Composto RJ
    Soft Matter; 2014 May; 10(19):3404-13. PubMed ID: 24643463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays.
    Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z
    Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
    Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z
    Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.