BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19152096)

  • 1. Cerebral blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism?
    Anile C; De Bonis P; Di Chirico A; Ficola A; Mangiola A; Petrella G
    Childs Nerv Syst; 2009 Mar; 25(3):325-35; discussion 337-40. PubMed ID: 19152096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow velocities during experimental intracranial hypertension in pigs.
    Anile C; De Bonis P; Fernandez E; Ficola A; Petrella G; Santini P; Mangiola A
    Neurol Res; 2012 Nov; 34(9):859-63. PubMed ID: 22889577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Intracranial Pressure Attenuates the Pulsating Component of Cerebral Venous Outflow.
    Unnerbäck M; Ottesen JT; Reinstrup P
    Neurocrit Care; 2019 Oct; 31(2):273-279. PubMed ID: 31240621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP.
    Zadka Y; Rosenthal G; Doron O; Barnea O
    J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension.
    Hauerberg J; Xiaodong M; Willumsen L; Pedersen DB; Juhler M
    J Neurosurg Anesthesiol; 1998 Apr; 10(2):106-12. PubMed ID: 9559769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced Dynamic Intracranial Pressure and Cerebrovascular Reactivity Assessment of Cerebrovascular Autoregulation After Traumatic Brain Injury with High Intracranial Pressure in Rats.
    Bragin DE; Statom GL; Nemoto EM
    Acta Neurochir Suppl; 2018; 126():309-312. PubMed ID: 29492580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model.
    Bergsneider M; Alwan AA; Falkson L; Rubinstein EH
    Acta Neurochir Suppl; 1998; 71():266-8. PubMed ID: 9779203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood flow and cerebral blood flow velocity during angiotensin-induced arterial hypertension in dogs.
    Werner C; Kochs E; Hoffman WE; Blanc IF; Schulte am Esch J
    Can J Anaesth; 1993 Aug; 40(8):755-60. PubMed ID: 8403159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure.
    Varsos GV; Richards HK; Kasprowicz M; Reinhard M; Smielewski P; Brady KM; Pickard JD; Czosnyka M
    Neurocrit Care; 2014 Feb; 20(1):40-8. PubMed ID: 24248737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone.
    Richards HK; Czosnyka M; Pickard JD
    Acta Neurochir (Wien); 1999; 141(11):1221-7 discussion 1226-7. PubMed ID: 10592124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular Consequences of Elevated Intracranial Pressure After Traumatic Brain Injury.
    Calviello LA; Zeiler FA; Donnelly J; Czigler A; Lavinio A; Hutchinson PJ; Czosnyka M; Smielewski P
    Acta Neurochir Suppl; 2021; 131():43-48. PubMed ID: 33839816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hemodynamic response of the cerebral bridging veins to changes in ICP.
    Yu Y; Chen J; Si Z; Zhao G; Xu S; Wang G; Ding F; Luan L; Wu L; Pang Q
    Neurocrit Care; 2010 Feb; 12(1):117-23. PubMed ID: 19898968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation.
    Hlatky R; Valadka AB; Robertson CS
    Neurosurgery; 2005 Nov; 57(5):917-23; discussion 917-23. PubMed ID: 16284561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICP and CBF regulation: a new hypothesis to explain the "windkessel" phenomenon.
    Carmelo A; Ficola A; Fravolini ML; La Cava M; Maira G; Mangiola A
    Acta Neurochir Suppl; 2002; 81():112-6. PubMed ID: 12168279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation.
    Richards HK; Czosnyka M; Whitehouse H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():229-32. PubMed ID: 9779192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow autoregulation in experimental liver failure.
    Dethloff TJ; Knudsen GM; Larsen FS
    J Cereb Blood Flow Metab; 2008 May; 28(5):916-26. PubMed ID: 18059432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension.
    Bragin DE; Statom G; Nemoto EM
    Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral blood flow autoregulation in acute intracranial hypertension.
    Hauerberg J; Juhler M
    J Cereb Blood Flow Metab; 1994 May; 14(3):519-25. PubMed ID: 8163595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ICP and Its Cerebral Haemodynamic Sequelae.
    Donnelly J; Czosnyka M; Harland S; Varsos GV; Cardim D; Robba C; Liu X; Ainslie PN; Smielewski P
    Acta Neurochir Suppl; 2018; 126():47-50. PubMed ID: 29492530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.