These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19152275)

  • 1. Nanowires for enhanced boiling heat transfer.
    Chen R; Lu MC; Srinivasan V; Wang Z; Cho HH; Majumdar A
    Nano Lett; 2009 Feb; 9(2):548-53. PubMed ID: 19152275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling.
    Song Y; Gong S; Vaartstra G; Wang EN
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12629-12635. PubMed ID: 33683095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of inter-nanowire distance in metal nanowires on pool boiling heat transfer characteristics.
    Udaya Kumar G; Suresh S; Thansekhar MR; Halpati D
    J Colloid Interface Sci; 2018 Dec; 532():218-230. PubMed ID: 30081267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Tier Hierarchical Structures for Extreme Pool Boiling Heat Transfer Performance.
    Song Y; Díaz-Marín CD; Zhang L; Cha H; Zhao Y; Wang EN
    Adv Mater; 2022 Aug; 34(32):e2200899. PubMed ID: 35725240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.
    Wang Q; Chen R
    Nano Lett; 2018 May; 18(5):3096-3103. PubMed ID: 29624394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review.
    Upot NV; Fazle Rabbi K; Khodakarami S; Ho JY; Kohler Mendizabal J; Miljkovic N
    Nanoscale Adv; 2023 Feb; 5(5):1232-1270. PubMed ID: 36866258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays.
    Shim DI; Choi G; Lee N; Kim T; Kim BS; Cho HH
    ACS Appl Mater Interfaces; 2017 May; 9(20):17595-17602. PubMed ID: 28470059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria.
    Kim BS; Choi G; Shin S; Gemming T; Cho HH
    Sci Rep; 2016 Oct; 6():34348. PubMed ID: 27708341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer with Water, Water/Butanol Mixtures and Novec 649.
    Može M; Vajc V; Zupančič M; Golobič I
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transfer Characteristics of Pool Boiling with Scalable Plasma-Sprayed Aluminum Coatings.
    Ranjan A; Priy A; Ahmad I; Pathak M; Khan MK; Keshri AK
    Langmuir; 2023 May; 39(18):6337-6354. PubMed ID: 37092979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Paradigm for Understanding and Enhancing the Critical Heat Flux (CHF) Limit.
    Fazeli A; Moghaddam S
    Sci Rep; 2017 Jul; 7(1):5184. PubMed ID: 28701688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.
    Li D; Wu GS; Wang W; Wang YD; Liu D; Zhang DC; Chen YF; Peterson GP; Yang R
    Nano Lett; 2012 Jul; 12(7):3385-90. PubMed ID: 22694316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boiling Heat Transfer with a Well-Ordered Microporous Architecture.
    Pham QN; Zhang S; Hao S; Montazeri K; Lin CH; Lee J; Mohraz A; Won Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19174-19183. PubMed ID: 32239917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Heat Flux Evaporation of Low Surface Tension Liquids from Nanoporous Membranes.
    Hanks DF; Lu Z; Sircar J; Kinefuchi I; Bagnall KR; Salamon TR; Antao DS; Barabadi B; Wang EN
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7232-7238. PubMed ID: 31951381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofluid Boiling on Micro/Nano-engineered Surfaces.
    Ridwan S; Pollack J; McCarthy M
    Langmuir; 2021 May; 37(20):6107-6114. PubMed ID: 33973789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Micro-Patterned Surface for Pool-boiling Enhancement by Using Powder Injection Molding Process.
    Cho H; Godinez J; Han JS; Fadda D; You SM; Lee J; Park SJ
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30736470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Boiling Heat Transfer using Self-Actuated Nanobimorphs.
    Shin S; Choi G; Rallabandi B; Lee D; Shim DI; Kim BS; Kim KM; Cho HH
    Nano Lett; 2018 Oct; 18(10):6392-6396. PubMed ID: 30169964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boiling and quenching heat transfer advancement by nanoscale surface modification.
    Hu H; Xu C; Zhao Y; Ziegler KJ; Chung JN
    Sci Rep; 2017 Jul; 7(1):6117. PubMed ID: 28733647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criticality in the slowed-down boiling crisis at zero gravity.
    Charignon T; Lloveras P; Chatain D; Truskinovsky L; Vives E; Beysens D; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053007. PubMed ID: 26066249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Nanoparticle Size and Concentration on Pool Boiling Heat Transfer with TiO
    Hadžić A; Može M; Arhar K; Zupančič M; Golobič I
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.