BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19152743)

  • 1. Genetic modification for bimaternal embryo development.
    Kono T
    Reprod Fertil Dev; 2009; 21(1):31-6. PubMed ID: 19152743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birth of parthenogenetic mice that can develop to adulthood.
    Kono T; Obata Y; Wu Q; Niwa K; Ono Y; Yamamoto Y; Park ES; Seo JS; Ogawa H
    Nature; 2004 Apr; 428(6985):860-4. PubMed ID: 15103378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic imprinting is a barrier to parthenogenesis in mammals.
    Kono T
    Cytogenet Genome Res; 2006; 113(1-4):31-5. PubMed ID: 16575160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice.
    Kono T; Kawahara M; Wu Q; Hiura H; Obata Y
    Ernst Schering Res Found Workshop; 2006; (60):23-33. PubMed ID: 16903414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germ cell-specific DNA methylation and genome diploidization in primitive vertebrates.
    Ma S; Huang W; Zhang L; Zhao S; Tong Y; Liu Z; Sun L; Chen H; Luo C
    Epigenetics; 2011 Dec; 6(12):1471-80. PubMed ID: 22139577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of amplified cDNA to investigate the expression of seven imprinted genes in human oocytes and preimplantation embryos.
    Salpekar A; Huntriss J; Bolton V; Monk M
    Mol Hum Reprod; 2001 Sep; 7(9):839-44. PubMed ID: 11517290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The parental non-equivalence of imprinting control regions during mammalian development and evolution.
    Schulz R; Proudhon C; Bestor TH; Woodfine K; Lin CS; Lin SP; Prissette M; Oakey RJ; Bourc'his D
    PLoS Genet; 2010 Nov; 6(11):e1001214. PubMed ID: 21124941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos.
    Geuns E; De Rycke M; Van Steirteghem A; Liebaers I
    Hum Mol Genet; 2003 Nov; 12(22):2873-9. PubMed ID: 14500540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.
    Bourc'his D; Proudhon C
    Mol Cell Endocrinol; 2008 Jan; 282(1-2):87-94. PubMed ID: 18178305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation.
    Kono T; Sotomaru Y; Katsuzawa Y; Dandolo L
    Dev Biol; 2002 Mar; 243(2):294-300. PubMed ID: 11884038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term.
    Wu Q; Kumagai T; Kawahara M; Ogawa H; Hiura H; Obata Y; Takano R; Kono T
    Reproduction; 2006 Mar; 131(3):481-8. PubMed ID: 16514191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imprinting of the mouse Igf2r gene depends on an intronic CpG island.
    Wutz A; Barlow DP
    Mol Cell Endocrinol; 1998 May; 140(1-2):9-14. PubMed ID: 9722161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation dynamics of imprinted genes in mouse germ cells.
    Lucifero D; Mertineit C; Clarke HJ; Bestor TH; Trasler JM
    Genomics; 2002 Apr; 79(4):530-8. PubMed ID: 11944985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse.
    Kono T; Obata Y; Yoshimzu T; Nakahara T; Carroll J
    Nat Genet; 1996 May; 13(1):91-4. PubMed ID: 8673112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Epigenetic regulation of genomic imprinting in germline cells and preimplantation embryos].
    Zhu YR; Zhang ML; Zhai ZC; Zhao YJ; Ma X
    Yi Chuan; 2016 Feb; 38(2):103-8. PubMed ID: 26907773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imprinting Status in Two Human Parthenogenetic Embryonic Stem Cell Lines: Analysis of 63 Imprinted Gene Expression Levels in Undifferentiated and Early Differentiated Stages.
    Mai Q; Mai X; Huang X; Zhang D; Huang K; Zhou C
    Stem Cells Dev; 2018 Mar; 27(6):430-439. PubMed ID: 29402175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of imprinted genes in human preimplantation development.
    Monk M; Salpekar A
    Mol Cell Endocrinol; 2001 Oct; 183 Suppl 1():S35-40. PubMed ID: 11576730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction.
    Saenz-de-Juano MD; Billooye K; Smitz J; Anckaert E
    Mol Hum Reprod; 2016 Jun; 22(6):427-41. PubMed ID: 26908643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes.
    Tomizawa S; Kobayashi H; Watanabe T; Andrews S; Hata K; Kelsey G; Sasaki H
    Development; 2011 Mar; 138(5):811-20. PubMed ID: 21247965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of parental-specific expression of imprinted genes in uniparental fetuses.
    Ogawa H; Wu Q; Komiyama J; Obata Y; Kono T
    FEBS Lett; 2006 Oct; 580(22):5377-84. PubMed ID: 16987518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.