These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19152791)

  • 41. Real-time nonlinear FEM with neural network for simulating soft organ model deformation.
    Morooka K; Chen X; Kurazume R; Uchida S; Hara K; Iwashita Y; Hashizume M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):742-9. PubMed ID: 18982671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Editorial: Identification of material parameters through inverse finite element modelling.
    Evans S; Avril S
    Comput Methods Biomech Biomed Engin; 2012; 15(1):1-2. PubMed ID: 22229516
    [No Abstract]   [Full Text] [Related]  

  • 43. Meshless algorithm for soft tissue cutting in surgical simulation.
    Jin X; Joldes GR; Miller K; Yang KH; Wittek A
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):800-11. PubMed ID: 22974246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements.
    Cash DM; Miga MI; Sinha TK; Galloway RL; Chapman WC
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1479-91. PubMed ID: 16279084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-quality model generation for finite element simulation of tissue deformation.
    Goksel O; Salcudean SE
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):248-56. PubMed ID: 20426119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time finite element modeling for surgery simulation: an application to virtual suturing.
    Berkley J; Turkiyyah G; Berg D; Ganter M; Weghorst S
    IEEE Trans Vis Comput Graph; 2004; 10(3):314-25. PubMed ID: 18579962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation framework of the finite element modeling of liver tissue.
    Shi H; Fahmi R; Farag AA
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):531-8. PubMed ID: 16685887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-time finite-element simulation of linear viscoelastic tissue behavior based on experimental data.
    Sedef M; Samur E; Basdogan C
    IEEE Comput Graph Appl; 2006; 26(6):58-68. PubMed ID: 17120914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring the nonlinear elastic properties of tissue-like phantoms.
    Erkamp RQ; Skovoroda AR; Emelianov SY; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):410-9. PubMed ID: 15139542
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Soft tissue tracking for minimally invasive surgery: learning local deformation online.
    Mountney P; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):364-72. PubMed ID: 18982626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time haptic cutting of high-resolution soft tissues.
    Wu J; Westermann R; Dick C
    Stud Health Technol Inform; 2014; 196():469-75. PubMed ID: 24732558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Volume Preserved Mass-Spring Model with Novel Constraints for Soft Tissue Deformation.
    Duan Y; Huang W; Chang H; Chen W; Zhou J; Teo SK; Su Y; Chui CK; Chang S
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):268-80. PubMed ID: 25398184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Image-based variational meshing.
    Goksel O; Salcudean SE
    IEEE Trans Med Imaging; 2011 Jan; 30(1):11-21. PubMed ID: 20601308
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast and adaptive finite element approach for modeling brain shift.
    Soza G; Grosso R; Labsik U; Nimsky C; Fahlbusch R; Greiner G; Hastreiter P
    Comput Aided Surg; 2003; 8(5):241-6. PubMed ID: 15529953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hybrid deformable model for real-time surgical simulation.
    Zhu B; Gu L
    Comput Med Imaging Graph; 2012 Jul; 36(5):356-65. PubMed ID: 22483053
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.
    Taylor ZA; Cheng M; Ourselin S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):701-8. PubMed ID: 18051120
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the unimportance of constitutive models in computing brain deformation for image-guided surgery.
    Wittek A; Hawkins T; Miller K
    Biomech Model Mechanobiol; 2009 Feb; 8(1):77-84. PubMed ID: 18246376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation.
    Kaladji A; Dumenil A; Castro M; Cardon A; Becquemin JP; Bou-Saïd B; Lucas A; Haigron P
    Comput Med Imaging Graph; 2013 Mar; 37(2):142-9. PubMed ID: 23562493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.