These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1915334)

  • 1. The influence of a respiratory acidosis on the exercise blood lactate response.
    McLellan TM
    Eur J Appl Physiol Occup Physiol; 1991; 63(1):6-11. PubMed ID: 1915334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the threshold of transcutaneous partial pressure of carbon dioxide represent the respiratory compensation point or anaerobic threshold?
    Liu Y; Steinacker JM; Stauch M
    Eur J Appl Physiol Occup Physiol; 1995; 71(4):326-31. PubMed ID: 8549575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of normocapnic hypoxia and the duration of exposure to hypoxia on supramaximal exercise performance.
    McLellan TM; Cheung SS; Meunier MR
    Eur J Appl Physiol Occup Physiol; 1993; 66(5):409-14. PubMed ID: 8330608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic and cardiorespiratory responses relative to the anaerobic threshold.
    McLellan TM; Gass GC
    Med Sci Sports Exerc; 1989 Apr; 21(2):191-8. PubMed ID: 2709982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased steady-state VO2 and larger O2 deficit with CO2 inhalation during exercise.
    Ostergaard L; Kjaer K; Jensen K; Gladden LB; Martinussen T; Pedersen PK
    Acta Physiol (Oxf); 2012 Mar; 204(3):371-81. PubMed ID: 21791016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial blood gases and acid-base status of dogs during graded dynamic exercise.
    Musch TI; Friedman DB; Haidet GC; Stray-Gundersen J; Waldrop TG; Ordway GA
    J Appl Physiol (1985); 1986 Nov; 61(5):1914-9. PubMed ID: 3096950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas exchange, blood lactate, and plasma catecholamines during incremental exercise in hypoxia and normoxia.
    Hughson RL; Green HJ; Sharratt MT
    J Appl Physiol (1985); 1995 Oct; 79(4):1134-41. PubMed ID: 8567554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise.
    Hirakoba K; Maruyama A; Inaki M; Misaka K
    Eur J Appl Physiol Occup Physiol; 1992; 64(1):73-7. PubMed ID: 1735416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood lactate threshold differences between arterialized and venous blood.
    Robergs RA; Chwalbinska-Moneta J; Mitchell JB; Pascoe DD; Houmard J; Costill DL
    Int J Sports Med; 1990 Dec; 11(6):446-51. PubMed ID: 2286483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic consequences of reduced frequency breathing during submaximal exercise at moderate altitude.
    Lee C; Cordain L; Sockler J; Tucker A
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):289-93. PubMed ID: 2282915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-exercise acidification induced by ingestion of NH4Cl increases the magnitude of the slow component of VO2 kinetics in humans.
    Zoładź J; Duda K; Majerczak J; Emmerich J; Domański J
    J Physiol Pharmacol; 1998 Sep; 49(3):443-55. PubMed ID: 9789796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of lactate threshold by respiratory gas exchange measures and blood lactate levels during incremental load work.
    von Duvillard SP; LeMura LM; Bacharach DW; Di Vico P
    J Manipulative Physiol Ther; 1993 Jun; 16(5):312-8. PubMed ID: 8345314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative evaluation of the individual anaerobic threshold and the critical power.
    McLellan TM; Cheung KS
    Med Sci Sports Exerc; 1992 May; 24(5):543-50. PubMed ID: 1569851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability, reproducibility and validity of the individual anaerobic threshold.
    McLellan TM; Jacobs I
    Eur J Appl Physiol Occup Physiol; 1993; 67(2):125-31. PubMed ID: 8223517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.
    Poole DC; Schaffartzik W; Knight DR; Derion T; Kennedy B; Guy HJ; Prediletto R; Wagner PD
    J Appl Physiol (1985); 1991 Oct; 71(4):1245-60. PubMed ID: 1757346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of respiratory acidosis on metabolism in exercise.
    Ehrsam RE; Heigenhauser GJ; Jones NL
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jul; 53(1):63-9. PubMed ID: 6811526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure.
    Zhang YY; Wasserman K; Sietsema KE; Ben-Dov I; Barstow TJ; Mizumoto G; Sullivan CS
    Chest; 1993 Mar; 103(3):735-41. PubMed ID: 8449060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of blood lactate accumulation from excess CO2 output during constant exercise.
    Hirakoba K; Maruyama A; Misaka K
    Appl Human Sci; 1996 Sep; 15(5):205-10. PubMed ID: 8979401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.