These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 19153722)
1. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel. Schmid P; Uran K; Macherey F; Ebert M; Ullrich HJ; Sommer D; Friedel F Anal Bioanal Chem; 2009 Apr; 393(8):1863-70. PubMed ID: 19153722 [TBL] [Abstract][Full Text] [Related]
2. High-Temperature Behaviour of Zn-Based Galvannealed Coatings on Steel. Gogola P; Gabalcová Z; Kusý M; Ptačinová J Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176224 [TBL] [Abstract][Full Text] [Related]
4. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction. Bürgi J; Neuenschwander R; Kellermann G; García Molleja J; Craievich AF; Feugeas J Rev Sci Instrum; 2013 Jan; 84(1):015102. PubMed ID: 23387690 [TBL] [Abstract][Full Text] [Related]
5. FIB and TEM observations of defects in hot-dip zinc coatings. Hong MH; Saka H J Electron Microsc (Tokyo); 2004; 53(5):545-52. PubMed ID: 15582963 [TBL] [Abstract][Full Text] [Related]
6. Multi-use high/low-temperature and pressure compatible portable chamber for in situ grazing-incidence X-ray scattering studies. Ferrer P; Rubio-Zuazo J; Heyman C; Esteban-Betegón F; Castro GR J Synchrotron Radiat; 2013 May; 20(Pt 3):474-81. PubMed ID: 23592627 [TBL] [Abstract][Full Text] [Related]
7. The new diffractometer for surface X-ray diffraction at beamline BL9 of DELTA. Krywka C; Paulus M; Sternemann C; Volmer M; Remhof A; Nowak G; Nefedov A; Pöter B; Spiegel M; Tolan M J Synchrotron Radiat; 2006 Jan; 13(Pt 1):8-13. PubMed ID: 16371703 [TBL] [Abstract][Full Text] [Related]
8. X-ray photoelectron and scanning Auger electron spectroscopy study of electrodeposited ZnCr coatings on steel. Itani H; Duchoslav J; Arndt M; Steck T; Gerdenitsch J; Faderl J; Preis K; Winkler W; Stifter D Anal Bioanal Chem; 2012 May; 403(3):663-73. PubMed ID: 22362274 [TBL] [Abstract][Full Text] [Related]
9. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer. Omote K J Phys Condens Matter; 2010 Dec; 22(47):474004. PubMed ID: 21386611 [TBL] [Abstract][Full Text] [Related]
10. Specular reflection intensity modulated by grazing-incidence diffraction in a wide angular range. Nikolaev KV; Makhotkin IA; Yakunin SN; Kruijs RWEV; Chuev MA; Bijkerk F Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):545-552. PubMed ID: 30182941 [TBL] [Abstract][Full Text] [Related]
11. Observations of the intestinal mucosa using environmental scanning electron microscopy (ESEM); comparison with conventional scanning electron microscopy (CSEM). Habold C; Dunel-Erb S; Chevalier C; Laurent P; Le Maho Y; Lignot JH Micron; 2003; 34(8):373-9. PubMed ID: 14680923 [TBL] [Abstract][Full Text] [Related]
12. Combining grazing incidence X-rays and micro-diffraction for qualitative phase identification in forensic powdered micro-samples. Sáez-Martínez P; Gárate-Lagos J; Camargo S; Torres-Roquer F; Queralt I; Salazar-Kuri U Forensic Sci Int; 2021 Nov; 328():111054. PubMed ID: 34666305 [TBL] [Abstract][Full Text] [Related]
13. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires. Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085 [TBL] [Abstract][Full Text] [Related]
14. Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy. Beech IB; Cheung CW; Johnson DB; Smith JR Biofouling; 1996; 10(1-3):65-77. PubMed ID: 22115103 [TBL] [Abstract][Full Text] [Related]
15. In situ observation of phase transformation in an Fe-Zn system at high temperatures using an image plate. Kimura M; Imafuku M; Kurosaki M; Fujii S J Synchrotron Radiat; 1998 May; 5(Pt 3):983-5. PubMed ID: 15263719 [TBL] [Abstract][Full Text] [Related]
16. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules. Shibata Y; Takashima H; Yamamoto H; Miyazaki T Int J Oral Maxillofac Implants; 2004; 19(2):177-83. PubMed ID: 15101587 [TBL] [Abstract][Full Text] [Related]
18. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings. Sun G; Ma J; Zhang S Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():67-72. PubMed ID: 24863199 [TBL] [Abstract][Full Text] [Related]
19. Structural change of biomimetic hydroxyapatite coatings due to heat treatment. Forsgren J; Svahn F; Jarmar T; Engqvist H J Appl Biomater Biomech; 2007; 5(1):23-7. PubMed ID: 20799193 [TBL] [Abstract][Full Text] [Related]
20. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion. Brassard JD; Sarkar DK; Perron J; Audibert-Hayet A; Melot D J Colloid Interface Sci; 2015 Jun; 447():240-7. PubMed ID: 25529334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]