These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19153762)

  • 1. Learning flexible sensori-motor mappings in a complex network.
    Vasilaki E; Fusi S; Wang XJ; Senn W
    Biol Cybern; 2009 Feb; 100(2):147-58. PubMed ID: 19153762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus sampling as an exploration mechanism for fast reinforcement learning.
    Vladimirskiy BB; Vasilaki E; Urbanczik R; Senn W
    Biol Cybern; 2009 Apr; 100(4):319-30. PubMed ID: 19360435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimensional reduction for reward-based learning.
    Swinehart CD; Abbott LF
    Network; 2006 Sep; 17(3):235-52. PubMed ID: 17162613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning with modulated spike timing dependent synaptic plasticity.
    Farries MA; Fairhall AL
    J Neurophysiol; 2007 Dec; 98(6):3648-65. PubMed ID: 17928565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales.
    Fusi S; Asaad WF; Miller EK; Wang XJ
    Neuron; 2007 Apr; 54(2):319-33. PubMed ID: 17442251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the distal reward problem with rare correlations.
    Soltoggio A; Steil JJ
    Neural Comput; 2013 Apr; 25(4):940-78. PubMed ID: 23339615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates.
    Fusi S
    Biol Cybern; 2002 Dec; 87(5-6):459-70. PubMed ID: 12461635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glutamate hypothesis of reinforcement learning.
    Pennartz CM; McNaughton BL; Mulder AB
    Prog Brain Res; 2000; 126():231-53. PubMed ID: 11105650
    [No Abstract]   [Full Text] [Related]  

  • 11. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular decomposition in visuomotor learning.
    Ghahramani Z; Wolpert DM
    Nature; 1997 Mar; 386(6623):392-5. PubMed ID: 9121554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task.
    Legenstein R; Chase SM; Schwartz AB; Maass W
    J Neurosci; 2010 Jun; 30(25):8400-10. PubMed ID: 20573887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergies between intrinsic and synaptic plasticity mechanisms.
    Triesch J
    Neural Comput; 2007 Apr; 19(4):885-909. PubMed ID: 17348766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of active body movement to visual development in evolutionary robots.
    Suzuki M; Floreano D; Di Paolo EA
    Neural Netw; 2005; 18(5-6):656-65. PubMed ID: 16112555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised learning through neuronal response modulation.
    Swinehart CD; Abbott LF
    Neural Comput; 2005 Mar; 17(3):609-31. PubMed ID: 15802008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent structural plasticity.
    Butz M; Wörgötter F; van Ooyen A
    Brain Res Rev; 2009 May; 60(2):287-305. PubMed ID: 19162072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.