These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 19153811)
1. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil. Lladó S; Jiménez N; Viñas M; Solanas AM Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811 [TBL] [Abstract][Full Text] [Related]
2. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related]
3. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Tauler M; Vila J; Nieto JM; Grifoll M Appl Microbiol Biotechnol; 2016 Apr; 100(7):3321-36. PubMed ID: 26637425 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Lotfabad SK; Gray MR Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320 [TBL] [Abstract][Full Text] [Related]
5. Microbial community changes during the bioremediation of creosote-contaminated soil. Grant RJ; Muckian LM; Clipson NJ; Doyle EM Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507 [TBL] [Abstract][Full Text] [Related]
6. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Sabaté J; Viñas M; Solanas AM Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226 [TBL] [Abstract][Full Text] [Related]
8. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Li X; Li P; Lin X; Zhang C; Li Q; Gong Z J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Zheng Z; Obbard JP Environ Sci Pollut Res Int; 2003; 10(3):173-6. PubMed ID: 12846378 [TBL] [Abstract][Full Text] [Related]
11. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil. Zeng J; Lin X; Zhang J; Li X J Hazard Mater; 2010 Nov; 183(1-3):718-23. PubMed ID: 20724073 [TBL] [Abstract][Full Text] [Related]
12. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. Simarro R; González N; Bautista LF; Molina MC J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312 [TBL] [Abstract][Full Text] [Related]
14. [Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity]. Wang F; Su ZC; Yang H; Li XJ; Yang GP; Dong DB Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3020-6. PubMed ID: 20353072 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ landtreatment. Guerin TF J Hazard Mater; 1999 Mar; 65(3):305-15. PubMed ID: 10337404 [TBL] [Abstract][Full Text] [Related]
16. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Kulik N; Goi A; Trapido M; Tuhkanen T J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683 [TBL] [Abstract][Full Text] [Related]
17. [Isolation, identification of a pyrene-degrading Mycobacterium sp. strain TZh51and its characteristics for contaminated soil bioremediation]. Baoliang J; Bingquan F; Xinhua S; Mingbo G Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1214-20. PubMed ID: 19062647 [TBL] [Abstract][Full Text] [Related]
18. Metagenomic insights into the microbial cooperative networks of a benz(a)anthracene-7,12-dione degrading community from a creosote-contaminated soil. Jiménez-Volkerink SN; Jordán M; Smidt H; Minguillón C; Vila J; Grifoll M Sci Total Environ; 2024 Jan; 907():167832. PubMed ID: 37863223 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Wu Y; Luo Y; Zou D; Ni J; Liu W; Teng Y; Li Z Biodegradation; 2008 Apr; 19(2):247-57. PubMed ID: 17541708 [TBL] [Abstract][Full Text] [Related]
20. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. Jiménez-Volkerink SN; Jordán M; Singleton DR; Grifoll M; Vila J Environ Pollut; 2023 Jul; 328():121624. PubMed ID: 37059172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]