BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19154052)

  • 1. Cole-Davidson dynamics of simple chain models.
    Dotson TC; Budzien J; McCoy JD; Adolf DB
    J Chem Phys; 2009 Jan; 130(2):024903. PubMed ID: 19154052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological complexity in simple chain models.
    Dotson TC; Heffernan JV; Budzien J; Dotson KT; Avila F; Limmer DT; McCoy DT; McCoy JD; Adolf DB
    J Chem Phys; 2008 May; 128(18):184905. PubMed ID: 18532846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational relaxation in simple chain models.
    Heffernan JV; Budzien J; Avila F; Dotson TC; Aston VJ; McCoy JD; Adolf DB
    J Chem Phys; 2007 Dec; 127(21):214902. PubMed ID: 18067376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rounded stretched exponential for time relaxation functions.
    Powles JG; Heyes DM; Rickayzen G; Evans WA
    J Chem Phys; 2009 Dec; 131(21):214509. PubMed ID: 19968353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics in sodium poly (L-glutamate) aqueous solutions analyzed by means of the stretched exponential decay of the Williams-Watts function.
    Bordi F; Cametti C; Paradossi G
    Biopolymers; 1995 Oct; 36(4):539-45. PubMed ID: 7578947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pressure on structure and dynamics of model elastomers: a molecular dynamics study.
    Liu J; Wu S; Cao D; Zhang L
    J Chem Phys; 2008 Oct; 129(15):154905. PubMed ID: 19045227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dispersion on the relaxation-retardation time scale ratio.
    Ito N; Richert R
    J Chem Phys; 2005 Sep; 123(10):106101. PubMed ID: 16178624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems.
    Hilfer R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061510. PubMed ID: 12188735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalization of the Cole-Davidson and Kohlrausch functions to describe the primary response of glass-forming systems.
    Kahlau R; Kruk D; Blochowicz T; Novikov VN; Rössler EA
    J Phys Condens Matter; 2010 Sep; 22(36):365101. PubMed ID: 21386529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency dependent study of the correlation functions in EPR spectroscopy--The Cole-Davidson approach. II. 2,N-(4-n-Butyl benzilidene) 4-amino 2,2,6,6-tetramethyl piperidine 1-oxide in toluene.
    Hwang JS; Al-Janabi YT; Oweimreen GA
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Nov; 77(4):862-8. PubMed ID: 20843735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of single chains within a model polymer melt.
    McCormick JA; Hall CK; Khan SA
    J Chem Phys; 2005 Mar; 122(11):114902. PubMed ID: 15836252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A program for the fitting of Debye, Cole-Cole, Cole-Davidson, and Havriliak-Negami dispersions to dielectric data.
    Grosse C
    J Colloid Interface Sci; 2014 Apr; 419():102-6. PubMed ID: 24491337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description of physical aging kinetics of glassy polymers by interpretation of parameters of the Kohlrausch-Williams-Watts relaxation function via simulation.
    Rabiei N; Amirshahi SH; Haghighat Kish M
    Phys Rev E; 2019 Mar; 99(3-1):032502. PubMed ID: 30999396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.
    Liu J; Cao D; Zhang L
    J Chem Phys; 2009 Jul; 131(3):034903. PubMed ID: 19624229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of relaxation time constants for amorphous pharmaceutical systems.
    Shamblin SL; Hancock BC; Dupuis Y; Pikal MJ
    J Pharm Sci; 2000 Mar; 89(3):417-27. PubMed ID: 10707021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multistep relaxation in equilibrium polymer solutions: a minimal model of relaxation in "complex" fluids.
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2008 Sep; 129(9):094901. PubMed ID: 19044888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive dielectric and conductive effects in 2D resistor-capacitor networks.
    Hamou RF; Macdonald JR; Tuncer E
    J Phys Condens Matter; 2009 Jan; 21(2):025904. PubMed ID: 21813993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the nonlinear dielectric increment in the Cole-Davidson model.
    Déjardin JL; Jadzyn J
    J Chem Phys; 2006 Sep; 125(11):114503. PubMed ID: 16999486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation.
    Zhang L; Greenfield ML
    J Chem Phys; 2007 Nov; 127(19):194502. PubMed ID: 18035887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.