BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 19154080)

  • 1. Nested uncertainties in biochemical models.
    Schaber J; Liebermeister W; Klipp E
    IET Syst Biol; 2009 Jan; 3(1):1-9. PubMed ID: 19154080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioBayes: a software package for Bayesian inference in systems biology.
    Vyshemirsky V; Girolami M
    Bioinformatics; 2008 Sep; 24(17):1933-4. PubMed ID: 18632751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling and analysis of the sugar cataract development process using stochastic hybrid systems.
    Riley D; Koutsoukos X; Riley K
    IET Syst Biol; 2009 May; 3(3):137-54. PubMed ID: 19449975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging from molecular simulation to biochemical networks.
    Stein M; Gabdoulline RR; Wade RC
    Curr Opin Struct Biol; 2007 Apr; 17(2):166-72. PubMed ID: 17395455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal experimental design with the sigma point method.
    Schenkendorf R; Kremling A; Mangold M
    IET Syst Biol; 2009 Jan; 3(1):10-23. PubMed ID: 19154081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general model of reaction kinetics in biological systems.
    Haag JE; Vande Wouwer A; Remy M
    Bioprocess Biosyst Eng; 2005 Aug; 27(5):303-9. PubMed ID: 15986214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resources, standards and tools for systems biology.
    Wierling C; Herwig R; Lehrach H
    Brief Funct Genomic Proteomic; 2007 Sep; 6(3):240-51. PubMed ID: 17942476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter identification, experimental design and model falsification for biological network models using semidefinite programming.
    Hasenauer J; Waldherr S; Wagner K; Allgöwer F
    IET Syst Biol; 2010 Mar; 4(2):119-30. PubMed ID: 20232992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems.
    Walker DC; Southgate J
    Brief Bioinform; 2009 Jul; 10(4):450-61. PubMed ID: 19293250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory network inference: data integration in dynamic models-a review.
    Hecker M; Lambeck S; Toepfer S; van Someren E; Guthke R
    Biosystems; 2009 Apr; 96(1):86-103. PubMed ID: 19150482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological network design strategies: discovery through dynamic optimization.
    Adiwijaya BS; Barton PI; Tidor B
    Mol Biosyst; 2006 Dec; 2(12):650-9. PubMed ID: 17216046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability and uncertainty of biokinetic model parameters: the discrete empirical Bayes approximation.
    Miller G
    Radiat Prot Dosimetry; 2008; 131(3):394-8. PubMed ID: 18689801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computing chemical organizations in biological networks.
    Centler F; Kaleta C; di Fenizio PS; Dittrich P
    Bioinformatics; 2008 Jul; 24(14):1611-8. PubMed ID: 18480100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model discrimination using data collaboration.
    Feeley R; Frenklach M; Onsum M; Russi T; Arkin A; Packard A
    J Phys Chem A; 2006 Jun; 110(21):6803-13. PubMed ID: 16722696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for simulating the dynamics of complex biological processes.
    Schilstra MJ; Martin SR; Keating SM
    Methods Cell Biol; 2008; 84():807-42. PubMed ID: 17964950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Beta Workbench: a computational tool to study the dynamics of biological systems.
    Dematté L; Priami C; Romanel A
    Brief Bioinform; 2008 Sep; 9(5):437-49. PubMed ID: 18463130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring dynamic properties of biochemical reaction networks from structural knowledge.
    Klipp E; Liebermeister W; Wierling C
    Genome Inform; 2004; 15(1):125-37. PubMed ID: 15712116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux balance analysis: interrogating genome-scale metabolic networks.
    Oberhardt MA; Chavali AK; Papin JA
    Methods Mol Biol; 2009; 500():61-80. PubMed ID: 19399432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure learning for Bayesian networks as models of biological networks.
    Larjo A; Shmulevich I; Lähdesmäki H
    Methods Mol Biol; 2013; 939():35-45. PubMed ID: 23192539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity reduction of biochemical rate expressions.
    Schmidt H; Madsen MF; Danø S; Cedersund G
    Bioinformatics; 2008 Mar; 24(6):848-54. PubMed ID: 18267948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.