These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19154082)

  • 1. Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks.
    Maurya MR; Bornheimer SJ; Venkatasubramanian V; Subramaniam S
    IET Syst Biol; 2009 Jan; 3(1):24-39. PubMed ID: 19154082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.
    Maurya MR; Bornheimer SJ; Venkatasubramanian V; Subramaniam S
    Syst Biol (Stevenage); 2005 Dec; 152(4):229-42. PubMed ID: 16986265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
    Bornheimer SJ; Maurya MR; Farquhar MG; Subramaniam S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15899-904. PubMed ID: 15520372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral coarse graining for random walks in bipartite networks.
    Wang Y; Zeng A; Di Z; Fan Y
    Chaos; 2013 Mar; 23(1):013104. PubMed ID: 23556941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.
    Sun X; Medvedovic M
    IET Syst Biol; 2016 Feb; 10(1):10-6. PubMed ID: 26816394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-graining and self-dissimilarity of complex networks.
    Itzkovitz S; Levitt R; Kashtan N; Milo R; Itzkovitz M; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016127. PubMed ID: 15697678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
    Tangherloni A; Nobile MS; Cazzaniga P; Capitoli G; Spolaor S; Rundo L; Mauri G; Besozzi D
    PLoS Comput Biol; 2021 Sep; 17(9):e1009410. PubMed ID: 34499658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization.
    Guillén-Gosálbez G; Miró A; Alves R; Sorribas A; Jiménez L
    BMC Syst Biol; 2013 Oct; 7():113. PubMed ID: 24176044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms.
    Crampin EJ; Schnell S; McSharry PE
    Prog Biophys Mol Biol; 2004 Sep; 86(1):77-112. PubMed ID: 15261526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.
    Kastrup CJ; Runyon MK; Lucchetta EM; Price JM; Ismagilov RF
    Acc Chem Res; 2008 Apr; 41(4):549-58. PubMed ID: 18217723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data.
    Shindo Y; Kondo Y; Sako Y
    Sci Rep; 2018 May; 8(1):6790. PubMed ID: 29717206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient, sparse biological network determination.
    August E; Papachristodoulou A
    BMC Syst Biol; 2009 Feb; 3():25. PubMed ID: 19236711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks.
    Gille C; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jan; 1():5. PubMed ID: 17408512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions.
    Erban R
    J Math Biol; 2020 Jan; 80(1-2):457-479. PubMed ID: 31541299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale stochastic organization-oriented coarse-graining exemplified on the human mitotic checkpoint.
    Henze R; Mu C; Puljiz M; Kamaleson N; Huwald J; Haslegrave J; di Fenizio PS; Parker D; Good C; Rowe JE; Ibrahim B; Dittrich P
    Sci Rep; 2019 Mar; 9(1):3902. PubMed ID: 30846816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Computational Approach to Steady State Correspondence of Regular and Generalized Mass Action Systems.
    Johnston MD
    Bull Math Biol; 2015 Jun; 77(6):1065-100. PubMed ID: 25895700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RMBNToolbox: random models for biochemical networks.
    Aho T; Smolander OP; Niemi J; Yli-Harja O
    BMC Syst Biol; 2007 May; 1():22. PubMed ID: 17524136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.