BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 19154134)

  • 1. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational cycling in beta-phosphoglucomutase catalysis: reorientation of the beta-D-glucose 1,6-(Bis)phosphate intermediate.
    Dai J; Wang L; Allen KN; Radstrom P; Dunaway-Mariano D
    Biochemistry; 2006 Jun; 45(25):7818-24. PubMed ID: 16784233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caught in the act: the structure of phosphorylated beta-phosphoglucomutase from Lactococcus lactis.
    Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2002 Jul; 41(26):8351-9. PubMed ID: 12081483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Substrate Recognition and Catalysis of the Haloalkanoic Acid Dehalogenase Family Member α-Phosphoglucomutase.
    Zhang C; Allen KN; Dunaway-Mariano D
    Biochemistry; 2018 Jul; 57(30):4504-4517. PubMed ID: 29952545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
    Regni C; Schramm AM; Beamer LJ
    J Biol Chem; 2006 Jun; 281(22):15564-71. PubMed ID: 16595672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction.
    Jin Y; Bhattasali D; Pellegrini E; Forget SM; Baxter NJ; Cliff MJ; Bowler MW; Jakeman DL; Blackburn GM; Waltho JP
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12384-9. PubMed ID: 25104750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution structure of an atypical α-phosphoglucomutase related to eukaryotic phosphomannomutases.
    Nogly P; Matias PM; de Rosa M; Castro R; Santos H; Neves AR; Archer M
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2008-16. PubMed ID: 24100319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa.
    Regni C; Naught L; Tipton PA; Beamer LJ
    Structure; 2004 Jan; 12(1):55-63. PubMed ID: 14725765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of active site residues in Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase.
    Naught LE; Regni C; Beamer LJ; Tipton PA
    Biochemistry; 2003 Aug; 42(33):9946-51. PubMed ID: 12924943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage.
    Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN
    Bioorg Chem; 2006 Dec; 34(6):394-409. PubMed ID: 17070898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.
    Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a.
    Silvaggi NR; Zhang C; Lu Z; Dai J; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2006 May; 281(21):14918-26. PubMed ID: 16540464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the substrate specificity loop of the HAD superfamily cap domain.
    Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.
    Jia Y; Lu Z; Huang K; Herzberg O; Dunaway-Mariano D
    Biochemistry; 1999 Oct; 38(43):14165-73. PubMed ID: 10571990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction.
    Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN
    Science; 2003 Mar; 299(5615):2067-71. PubMed ID: 12637673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family.
    Lee Y; Mick J; Furdui C; Beamer LJ
    PLoS One; 2012; 7(6):e38114. PubMed ID: 22685552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.
    Lee Y; Mehra-Chaudhary R; Furdui C; Beamer LJ
    FEBS J; 2013 Jun; 280(11):2622-32. PubMed ID: 23517223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa.
    Schramm AM; Mehra-Chaudhary R; Furdui CM; Beamer LJ
    Biochemistry; 2008 Sep; 47(35):9154-62. PubMed ID: 18690721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
    Brown NG; Shanker S; Prasad BV; Palzkill T
    J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.