BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19154149)

  • 21. Absolute kinetics and reaction efficiencies of hydroxyl-radical-induced degradation of methyl isothiocyanate (MITC) in different quality waters.
    Swancutt KL; Dail MK; Mezyk SP; Ishida KP
    Chemosphere; 2010 Sep; 81(3):339-44. PubMed ID: 20696459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water.
    Rickman KA; Mezyk SP
    Chemosphere; 2010 Sep; 81(3):359-65. PubMed ID: 20701949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactions of hydroxyl radical with bergenin, a natural poly phenol studied by pulse radiolysis.
    Singh U; Barik A; Priyadarsini KI
    Bioorg Med Chem; 2009 Aug; 17(16):6008-14. PubMed ID: 19608422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid.
    Santoke H; Song W; Cooper WJ; Peake BM
    J Hazard Mater; 2012 May; 217-218():382-90. PubMed ID: 22487138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.
    Mazellier P; Busset C; Delmont A; De Laat J
    Water Res; 2007 Dec; 41(20):4585-94. PubMed ID: 17675205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced oxidation and reduction process chemistry of methyl tert-butyl ether (MTBE) reaction intermediates in aqueous solution: 2-methoxy-2-methyl-propanal, 2-methoxy-2-methyl-propanol, and 2-methoxy-2-methyl-propanoic acid.
    Mezyk SP; Hardison DR; Song W; O'Shea KE; Bartels DM; Cooper WJ
    Chemosphere; 2009 Nov; 77(10):1352-7. PubMed ID: 19853274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of hydroxyl radical-induced breakdown of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-d).
    Peller J; Wiest O; Kamat PV
    Chemistry; 2003 Nov; 9(21):5379-87. PubMed ID: 14613148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H(2)O(2).
    Yuan F; Hu C; Hu X; Qu J; Yang M
    Water Res; 2009 Apr; 43(6):1766-74. PubMed ID: 19232423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.
    Minakata D; Crittenden J
    Environ Sci Technol; 2011 Apr; 45(8):3479-86. PubMed ID: 21410278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.
    Rosal R; Gonzalo MS; Boltes K; Letón P; Vaquero JJ; García-Calvo E
    J Hazard Mater; 2009 Dec; 172(2-3):1061-8. PubMed ID: 19709806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water.
    Toth JE; Rickman KA; Venter AR; Kiddle JJ; Mezyk SP
    J Phys Chem A; 2012 Oct; 116(40):9819-24. PubMed ID: 22900636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study.
    Balci B; Oturan N; Cherrier R; Oturan MA
    Water Res; 2009 Apr; 43(7):1924-34. PubMed ID: 19249809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study.
    Kusić H; Rasulev B; Leszczynska D; Leszczynski J; Koprivanac N
    Chemosphere; 2009 May; 75(8):1128-34. PubMed ID: 19201442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment.
    Luo X; Zheng Z; Greaves J; Cooper WJ; Song W
    Water Res; 2012 Mar; 46(4):1327-36. PubMed ID: 22244271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate laws and kinetic modeling of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) transformation by hydroxyl radical in aqueous solution.
    Nguyen TV; Reinhard M; Gin KY
    Water Res; 2013 May; 47(7):2241-50. PubMed ID: 23466034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of H-acid and its derivative in aqueous solution by ionising radiation.
    Pálfi T; Takács E; Wojnárovits L
    Water Res; 2007 Jun; 41(12):2533-40. PubMed ID: 17466358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.
    Sunil Paul MM; Aravind UK; Pramod G; Saha A; Aravindakumar CT
    Org Biomol Chem; 2014 Aug; 12(30):5611-20. PubMed ID: 24957195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water.
    Pereira VJ; Linden KG; Weinberg HS
    Water Res; 2007 Nov; 41(19):4413-23. PubMed ID: 17631941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: rate constants and model predictions.
    Benitez FJ; Real FJ; Acero JL; Garcia C
    Water Res; 2007 Oct; 41(18):4073-84. PubMed ID: 17618669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic studies of the AOP radical-based oxidative and reductive destruction of pesticides and model compounds in water.
    Clark KK; Mezyk SP; Abbott A; Kiddle JJ
    Chemosphere; 2018 Apr; 197():193-199. PubMed ID: 29351878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.