These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19154199)

  • 1. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds.
    Burr SJ; Fry SC
    Plant J; 2009 May; 58(4):554-67. PubMed ID: 19154199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling.
    Kerr EM; Fry SC
    Planta; 2004 May; 219(1):73-83. PubMed ID: 14872243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase.
    Burr SJ; Fry SC
    Mol Plant; 2009 Sep; 2(5):883-92. PubMed ID: 19825665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures.
    Fry SC; Willis SC; Paterson AE
    Planta; 2000 Oct; 211(5):679-92. PubMed ID: 11089681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestion by fungal glycanases of arabinoxylans with different feruloylated side-chains.
    Wende G; Fry SC
    Phytochemistry; 1997 Jul; 45(6):1123-9. PubMed ID: 9272966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.
    Barros-Rios J; Malvar RA; Jung HJ; Bunzel M; Santiago R
    Phytochemistry; 2012 Nov; 83():43-50. PubMed ID: 22938993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Cleavage of Diferuloyl Cross-Links in Corn Bran Arabinoxylan by Two Bacterial Feruloyl Esterases.
    Lin S; Brask J; Munk L; Holck J; Krogh KBRM; Meyer AS; Wittrup Agger J; Wilkens C
    J Agric Food Chem; 2022 Oct; 70(41):13349-13357. PubMed ID: 36205442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabinose Conjugates Diagnostic of Ferulate-Ferulate and Ferulate-Monolignol Cross-Coupling Are Released by Mild Acidolysis of Grass Cell Walls.
    Lapierre C; Voxeur A; Boutet S; Ralph J
    J Agric Food Chem; 2019 Nov; 67(46):12962-12971. PubMed ID: 31644281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linking of maize walls by ferulate dimerization and incorporation into lignin.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2000 Dec; 48(12):6106-13. PubMed ID: 11312783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and partial characterization of feruloylated oligosaccharides from maize bran.
    Saulnier L; Vigouroux J; Thibault JF
    Carbohydr Res; 1995 Aug; 272(2):241-53. PubMed ID: 7497481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cysteinyl caffeic acid, caffeic acid, and L-dopa on the oxidative cross-linking of feruloylated arabinoxylans by a fungal laccase.
    Figueroa-Espinoza MC; Rouau X
    J Agric Food Chem; 1999 Feb; 47(2):497-503. PubMed ID: 10563923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon.
    Buanafina MM; Fescemyer HW; Sharma M; Shearer EA
    Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The peroxidase/H2O2 system as a free radical-generating agent for gelling maize bran arabinoxylans: rheological and structural properties.
    Martínez-López AL; Carvajal-Millan E; Lizardi-Mendoza J; López-Franco YL; Rascón-Chu A; Salas-Muñoz E; Barron C; Micard V
    Molecules; 2011 Oct; 16(10):8410-8. PubMed ID: 21986519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance, structure and analysis of ferulic acid in maize cell walls.
    Bento-Silva A; Vaz Patto MC; do Rosário Bronze M
    Food Chem; 2018 Apr; 246():360-378. PubMed ID: 29291861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feruloylation in grasses: current and future perspectives.
    de O Buanafina MM
    Mol Plant; 2009 Sep; 2(5):861-72. PubMed ID: 19825663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for intra- and extra-protoplasmic feruloylation and cross-linking in wheat seedling roots.
    Mastrangelo LI; Lenucci MS; Piro G; Dalessandro G
    Planta; 2009 Jan; 229(2):343-55. PubMed ID: 18974998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ; Patterson JA; Hamaker BR
    J Agric Food Chem; 2010 Jan; 58(1):493-9. PubMed ID: 20000566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats.
    Vogel B; Gallaher DD; Bunzel M
    J Agric Food Chem; 2012 Apr; 60(15):3847-52. PubMed ID: 22443203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.