BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19154344)

  • 1. A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts.
    Blüthgen N; Legewie S; Kielbasa SM; Schramme A; Tchernitsa O; Keil J; Solf A; Vingron M; Schäfer R; Herzel H; Sers C
    FEBS J; 2009 Feb; 276(4):1024-35. PubMed ID: 19154344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases.
    Owens DM; Keyse SM
    Oncogene; 2007 May; 26(22):3203-13. PubMed ID: 17496916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systems biology approach for the study of cumulative oncogenes with applications to the MAPK signal transduction pathway.
    Pant DK; Ghosh A
    Biophys Chem; 2006 Jan; 119(1):49-60. PubMed ID: 16185809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-specificity phosphatases are targets of the Wnt/β-catenin pathway and candidate mediators of β-catenin/Ras signaling interactions.
    Zeller E; Mock K; Horn M; Colnot S; Schwarz M; Braeuning A
    Biol Chem; 2012 Oct; 393(10):1183-91. PubMed ID: 23089536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia.
    Bermudez O; Jouandin P; Rottier J; Bourcier C; Pagès G; Gimond C
    J Cell Physiol; 2011 Jan; 226(1):276-84. PubMed ID: 20665674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models.
    Vera J; Rath O; Balsa-Canto E; Banga JR; Kolch W; Wolkenhauer O
    Mol Biosyst; 2010 Nov; 6(11):2174-91. PubMed ID: 20717620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems analysis of MAPK signal transduction.
    Blüthgen N; Legewie S
    Essays Biochem; 2008; 45():95-107. PubMed ID: 18793126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated oncogene detection in complex protein networks with applications to the MAPK signal transduction pathway.
    Pant D; Ghosh A
    Biophys Chem; 2005 Mar; 113(3):275-88. PubMed ID: 15620513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p73 cooperates with Ras in the activation of MAP kinase signaling cascade.
    Fernandez-Garcia B; Vaqué JP; Herreros-Villanueva M; Marques-Garcia F; Castrillo F; Fernandez-Medarde A; León J; Marín MC
    Cell Death Differ; 2007 Feb; 14(2):254-65. PubMed ID: 16645632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3.
    Gómez AR; López-Varea A; Molnar C; de la Calle-Mustienes E; Ruiz-Gómez M; Gómez-Skarmeta JL; de Celis JF
    Dev Dyn; 2005 Mar; 232(3):695-708. PubMed ID: 15704110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When kinases meet mathematics: the systems biology of MAPK signalling.
    Kolch W; Calder M; Gilbert D
    FEBS Lett; 2005 Mar; 579(8):1891-5. PubMed ID: 15763569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway.
    Li TS; Li XN; Chang ZJ; Fu XY; Liu L
    Cell Signal; 2006 Aug; 18(8):1287-98. PubMed ID: 16310341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional feedbacks in mammalian signal transduction pathways facilitate rapid and reliable protein induction.
    Blüthgen N
    Mol Biosyst; 2010 Jul; 6(7):1277-84. PubMed ID: 20449523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAS and TGF-beta exert antagonistic effects on extracellular matrix gene expression and fibroblast transformation.
    Wisdom R; Huynh L; Hsia D; Kim S
    Oncogene; 2005 Oct; 24(47):7043-54. PubMed ID: 16007133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcations and chaos in the MAPK signaling cascade.
    Zumsande M; Gross T
    J Theor Biol; 2010 Aug; 265(3):481-91. PubMed ID: 20435047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model.
    Asthagiri AR; Lauffenburger DA
    Biotechnol Prog; 2001; 17(2):227-39. PubMed ID: 11312698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of dual specificity phosphatases mRNA regulation by 3,4-methylenedioxymethamphetamine acute treatment in mice striatum.
    Marie-Claire C; Benturquia N; Lundqvist A; Courtin C; Noble F
    Brain Res; 2008 Nov; 1239():42-8. PubMed ID: 18786515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RbAp48 regulates cytoskeletal organization and morphology by increasing K-Ras activity and signaling through mitogen-activated protein kinase.
    Scuto A; Zhang H; Zhao H; Rivera M; Yeatman TJ; Jove R; Torres-Roca JF
    Cancer Res; 2007 Nov; 67(21):10317-24. PubMed ID: 17974974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway.
    Bermudez O; Marchetti S; Pagès G; Gimond C
    Oncogene; 2008 Jun; 27(26):3685-91. PubMed ID: 18223677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback regulation of DUSP6 transcription responding to MAPK1 via ETS2 in human cells.
    Furukawa T; Tanji E; Xu S; Horii A
    Biochem Biophys Res Commun; 2008 Dec; 377(1):317-20. PubMed ID: 18848526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.