BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

769 related articles for article (PubMed ID: 19154383)

  • 1. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of flight: Could 'four-winged' dinosaurs fly?
    Padian K; Dial KP
    Nature; 2005 Nov; 438(7066):E3; discussion E3-4. PubMed ID: 16292258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fundamental avian wing-stroke provides a new perspective on the evolution of flight.
    Dial KP; Jackson BE; Segre P
    Nature; 2008 Feb; 451(7181):985-9. PubMed ID: 18216784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary biology. Uphill dash may have led to flight.
    Pennisi E
    Science; 2003 Jan; 299(5605):329. PubMed ID: 12531990
    [No Abstract]   [Full Text] [Related]  

  • 6. Four-winged dinosaurs from China.
    Xu X; Zhou Z; Wang X; Kuang X; Zhang F; Du X
    Nature; 2003 Jan; 421(6921):335-40. PubMed ID: 12540892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis.
    Talori YS; Zhao JS; Liu YF; Lu WX; Li ZH; O'Connor JK
    PLoS Comput Biol; 2019 May; 15(5):e1006846. PubMed ID: 31048911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palaeontology: Dinosaurs take to the air.
    Prum RO
    Nature; 2003 Jan; 421(6921):323-4. PubMed ID: 12540882
    [No Abstract]   [Full Text] [Related]  

  • 11. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleontology. Four-winged dinos create a flutter.
    Stokstad E
    Science; 2003 Jan; 299(5606):491. PubMed ID: 12543943
    [No Abstract]   [Full Text] [Related]  

  • 13. New Perspectives on the Ontogeny and Evolution of Avian Locomotion.
    Heers AM
    Integr Comp Biol; 2016 Sep; 56(3):428-41. PubMed ID: 27371381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK; Thomas AL
    J Theor Biol; 2002 Feb; 214(3):351-70. PubMed ID: 11846595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical ligamentous mechanism in the evolution of avian flight.
    Baier DB; Gatesy SM; Jenkins FA
    Nature; 2007 Jan; 445(7125):307-10. PubMed ID: 17173029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.
    Simons EL
    Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed stability in birds.
    Sachs G
    Math Biosci; 2009 May; 219(1):1-6. PubMed ID: 19146863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The implications of low-speed fixed-wing aerofoil measurements on the analysis and performance of flapping bird wings.
    Spedding GR; Hedenström AH; McArthur J; Rosén M
    J Exp Biol; 2008 Jan; 211(Pt 2):215-23. PubMed ID: 18165249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.
    Nudds RL; Dyke GJ
    Science; 2010 May; 328(5980):887-9. PubMed ID: 20466930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.