BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 19154498)

  • 1. Functional and Morphological Changes Associated with Burst Wave Lithotripsy-Treated Pig Kidneys.
    Connors BA; Gardner T; Liu Z; Lingeman JE; Kreider W; Williams JC
    J Endourol; 2022 Dec; 36(12):1580-1585. PubMed ID: 35920117
    [No Abstract]   [Full Text] [Related]  

  • 2. Lithotripsy of Calcified Aortic Valve Leaflets by a Novel Ultrasound Transcatheter-Based Device.
    Bernava G; Fermi E; Gelpi G; Rizzi S; Benettin D; Barbuto M; Romagnoni C; Ventrella D; Palmieri MC; Agrifoglio M; Polvani G; Bacci ML; Pasquino E; Pesce M
    Front Cardiovasc Med; 2022; 9():850393. PubMed ID: 35402526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue neutrophil elastase contributes to extracorporeal shock wave lithotripsy-induced kidney damage and the neutrophil elastase inhibitor, sivelestat, attenuates kidney damage with gratifying immunohistopathological and biochemical findings: an experimental study.
    Colakerol A; Suzan S; Temiz MZ; Gonultas S; Aykan S; Ozsoy S; Kucuk SH; Yuruk E; Kandırali E; Semercioz A
    Urolithiasis; 2022 Feb; 50(1):103-112. PubMed ID: 34778918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and physiopathology of minor transient shock wave lithotripsy - induced renal injury based on urinary biomarkers levels.
    Dzięgała M; Krajewski W; Kołodziej A; Dembowski J; Zdrojowy R
    Cent European J Urol; 2018; 71(2):214-220. PubMed ID: 30038813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury.
    Handa RK; Territo PR; Blomgren PM; Persohn SA; Lin C; Johnson CD; Jiang L; Connors BA; Hutchins GD
    Urolithiasis; 2017 Oct; 45(5):507-513. PubMed ID: 28074231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil gelatinase-associated lipocalin (NGAL) value changes before and after shock wave lithotripsy.
    Vittori M; Baroni S; Ferraro PM; Gambaro G; Morelli R; Bassi P; D'Addessi A
    Urolithiasis; 2017 Aug; 45(4):347-351. PubMed ID: 27787615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones.
    Evan AP; Coe FL; Connors BA; Handa RK; Lingeman JE; Worcester EM
    Am J Physiol Renal Physiol; 2015 Apr; 308(8):F938-49. PubMed ID: 25656372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased crystal-cell interaction in vitro under co-culture of renal tubular cells and adipocytes by in vitro co-culture paracrine systems simulating metabolic syndrome.
    Ichikawa J; Okada A; Taguchi K; Fujii Y; Zuo L; Niimi K; Hamamoto S; Kubota Y; Umemoto Y; Itoh Y; Yasui T; Kawai N; Tozawa K; Kohri K
    Urolithiasis; 2014 Feb; 42(1):17-28. PubMed ID: 24162953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of contralateral kidney, liver and lung after extracorporeal shock wave lithotripsy in rabbits.
    Senyucel MF; Boybeyi O; Ayva S; Aslan MK; Soyer T; Demet AI; Kısa U; Basar M; Cakmak MA
    Urolithiasis; 2013 Oct; 41(5):431-6. PubMed ID: 23728121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ways in which SWL affects oxidant/antioxidant balance.
    Yilmaz E; Haciislamoglu A; Kisa U; Dogan O; Yuvanc E; Batislam E
    Urolithiasis; 2013 Apr; 41(2):137-41. PubMed ID: 23503875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of SWL on renal hemodynamics: could a change in renal artery contraction-relaxation responses be the cause?
    Yilmaz E; Mert C; Keskil Z; Tuglu D; Batislam E
    Urol Res; 2012 Dec; 40(6):775-80. PubMed ID: 22945811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating ESWL-induced renal injury based on urinary TNF-α, IL-1α, and IL-6 levels.
    Goktas C; Coskun A; Bicik Z; Horuz R; Unsal I; Serteser M; Albayrak S; Sarıca K
    Urol Res; 2012 Oct; 40(5):569-73. PubMed ID: 22314271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chronic outcome of shock wave lithotripsy is parenchymal fibrosis.
    Handa RK; Evan AP
    Urol Res; 2010 Aug; 38(4):301-5. PubMed ID: 20632169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of renal oxidative stress and inflammatory response after lithotripsy.
    Clark DL; Connors BA; Evan AP; Willis LR; Handa RK; Gao S
    BJU Int; 2009 Jun; 103(11):1562-8. PubMed ID: 19154498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of shock wave number on renal oxidative stress and inflammation.
    Clark DL; Connors BA; Evan AP; Handa RK; Gao S
    BJU Int; 2011 Jan; 107(2):318-22. PubMed ID: 20438571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy.
    Clark DL; Connors BA; Handa RK; Evan AP
    Urol Res; 2011 Dec; 39(6):437-42. PubMed ID: 21387182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of renal calculi by lithotripsy: minimizing short-term shock wave induced renal damage by using antioxidants.
    Al-Awadi KA; Kehinde EO; Loutfi I; Mojiminiyi OA; Al-Hunayan A; Abdul-Halim H; Al-Sarraf A; Memon A; Abraham MP
    Urol Res; 2008 Feb; 36(1):51-60. PubMed ID: 18064446
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.