These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19154733)

  • 41. The choroid plexus-cerebrospinal fluid system: from development to aging.
    Redzic ZB; Preston JE; Duncan JA; Chodobski A; Szmydynger-Chodobska J
    Curr Top Dev Biol; 2005; 71():1-52. PubMed ID: 16344101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pressure of the CSF and the morphogenesis of the CNS. II. Pressure necessary for normal development of brain vesicles.
    Pexieder T; Jelínek R
    Folia Morphol (Praha); 1970; 18(2):181-92. PubMed ID: 5441477
    [No Abstract]   [Full Text] [Related]  

  • 43. Blood-CSF barrier function in the rat embryo.
    Johansson PA; Dziegielewska KM; Ek CJ; Habgood MD; Liddelow SA; Potter AM; Stolp HB; Saunders NR
    Eur J Neurosci; 2006 Jul; 24(1):65-76. PubMed ID: 16800861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adult cerebrospinal fluid inhibits neurogenesis but facilitates gliogenesis from fetal rat neural stem cells.
    Buddensiek J; Dressel A; Kowalski M; Storch A; Sabolek M
    J Neurosci Res; 2009 Nov; 87(14):3054-66. PubMed ID: 19530161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse.
    Shum AS; Copp AJ
    Anat Embryol (Berl); 1996 Jul; 194(1):65-73. PubMed ID: 8800424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
    Abbott NJ; Pizzo ME; Preston JE; Janigro D; Thorne RG
    Acta Neuropathol; 2018 Mar; 135(3):387-407. PubMed ID: 29428972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional Analyses of Embryonic Cerebrospinal Fluid Proteins.
    Caprile T; Lamus F; Alonso MI; Montecinos H; Gato A
    Methods Mol Biol; 2019; 2044():51-60. PubMed ID: 31432405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tracking the movements that shape an embryo.
    Vogel G
    Science; 2000 Apr; 288(5463):86-7. PubMed ID: 10766642
    [No Abstract]   [Full Text] [Related]  

  • 49. [Mechanisms of reflex development].
    Garmasheva NL; Konstantinova NN; Belich AI
    Zh Evol Biokhim Fiziol; 1998; 34(1):96-106. PubMed ID: 9720153
    [No Abstract]   [Full Text] [Related]  

  • 50. Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure.
    Chau KF; Springel MW; Broadbelt KG; Park HY; Topal S; Lun MP; Mullan H; Maynard T; Steen H; LaMantia AS; Lehtinen MK
    Dev Cell; 2015 Dec; 35(6):789-802. PubMed ID: 26702835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.
    Vígh B; Manzano e Silva MJ; Frank CL; Vincze C; Czirok SJ; Szabó A; Lukáts A; Szél A
    Histol Histopathol; 2004 Apr; 19(2):607-28. PubMed ID: 15024719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Gastrulation in vegetalized larvae.
    GUSTAFSON T; WOLPERT L
    Exp Cell Res; 1961 Jan; 22():437-49. PubMed ID: 13709961
    [No Abstract]   [Full Text] [Related]  

  • 53. [The effect of a parietal meningoencephalocele on the morphogenesis of the neuroepithelium of the human brain].
    Savel'ev SV
    Izv Akad Nauk SSSR Biol; 1991; (4):633-9. PubMed ID: 1787234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH.
    Christensen HL; Barbuskaite D; Rojek A; Malte H; Christensen IB; Füchtbauer AC; Füchtbauer EM; Wang T; Praetorius J; Damkier HH
    J Physiol; 2018 Oct; 596(19):4709-4728. PubMed ID: 29956324
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular mechanisms in the morphogenesis of the sea urchin larva. The formation of arms.
    GUSTAFSON T; WOLPERT L
    Exp Cell Res; 1961 Jan; 22():509-20. PubMed ID: 13709959
    [No Abstract]   [Full Text] [Related]  

  • 56. Basic helix-loop-helix proteins expressed during early embryonic organogenesis.
    Hjalt T
    Int Rev Cytol; 2004; 236():251-80. PubMed ID: 15261740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thyroid hormone action and brain development.
    Koibuchi N; Chin WW
    Trends Endocrinol Metab; 2000; 11(4):123-8. PubMed ID: 10754532
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Embryo morphogenesis: getting down to cells and molecules.
    Solnica-Krezel L; Eaton S
    Development; 2003 Sep; 130(18):4229-33. PubMed ID: 12900440
    [No Abstract]   [Full Text] [Related]  

  • 59. A balanced view of choroid plexus structure and function: Focus on adult humans.
    Spector R; Keep RF; Robert Snodgrass S; Smith QR; Johanson CE
    Exp Neurol; 2015 May; 267():78-86. PubMed ID: 25747036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular aspects of brain development.
    Bayer SA
    Neurotoxicology; 1989; 10(3):307-20. PubMed ID: 2696895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.