BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19154827)

  • 1. Prevention of slip-related backward balance loss: the effect of session intensity and frequency on long-term retention.
    Bhatt T; Pai YC
    Arch Phys Med Rehabil; 2009 Jan; 90(1):34-42. PubMed ID: 19154827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to resist gait-slip falls: long-term retention in community-dwelling older adults.
    Bhatt T; Yang F; Pai YC
    Arch Phys Med Rehabil; 2012 Apr; 93(4):557-64. PubMed ID: 22341989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term retention of gait stability improvements.
    Bhatt T; Pai YC
    J Neurophysiol; 2005 Sep; 94(3):1971-9. PubMed ID: 15928059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can observational training substitute motor training in preventing backward balance loss after an unexpected slip during walking?
    Bhatt T; Pai YC
    J Neurophysiol; 2008 Feb; 99(2):843-52. PubMed ID: 18003882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of adaptive control over varying intervals: prevention of slip- induced backward balance loss during gait.
    Bhatt T; Wang E; Pai YC
    J Neurophysiol; 2006 May; 95(5):2913-22. PubMed ID: 16407423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can a single session of treadmill-based slip training reduce daily life falls in community-dwelling older adults? A randomized controlled trial.
    Wang Y; Wang S; Liu X; Lee A; Pai YC; Bhatt T
    Aging Clin Exp Res; 2022 Jul; 34(7):1593-1602. PubMed ID: 35237948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced intensity in gait-slip training can still improve stability.
    Yang F; Wang TY; Pai YC
    J Biomech; 2014 Jul; 47(10):2330-8. PubMed ID: 24835473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inoculation against falls: rapid adaptation by young and older adults to slips during daily activities.
    Pai YC; Bhatt T; Wang E; Espy D; Pavol MJ
    Arch Phys Med Rehabil; 2010 Mar; 91(3):452-9. PubMed ID: 20298839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immediate and latent interlimb transfer of gait stability adaptation following repeated exposure to slips.
    Bhatt T; Pai YC
    J Mot Behav; 2008 Sep; 40(5):380-90. PubMed ID: 18782713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from laboratory-induced falling: long-term motor retention among older adults.
    Pai YC; Yang F; Bhatt T; Wang E
    Age (Dordr); 2014 Jun; 36(3):9640. PubMed ID: 24668268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip?
    Lee A; Bhatt T; Liu X; Wang Y; Pai YC
    Gait Posture; 2018 Mar; 61():387-392. PubMed ID: 29453101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of the "first-trial effect" in gait-slip among community-living older adults.
    Liu X; Bhatt T; Wang S; Yang F; Pai YC
    Geroscience; 2017 Feb; 39(1):93-102. PubMed ID: 28299643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation-based balance training targeting both slip- and trip-induced falls among older adults: a randomized controlled trial.
    Allin LJ; Brolinson PG; Beach BM; Kim S; Nussbaum MA; Roberto KA; Madigan ML
    BMC Geriatr; 2020 Jun; 20(1):205. PubMed ID: 32532221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does severity of motor impairment affect reactive adaptation and fall-risk in chronic stroke survivors?
    Bhatt T; Dusane S; Patel P
    J Neuroeng Rehabil; 2019 Mar; 16(1):43. PubMed ID: 30902097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.